Оценить:
 Рейтинг: 0

Симметричные числа и сильная гипотеза Гольдбаха-Эйлера

Год написания книги
2023
Теги
<< 1 2 3 4 5 6 7 8 9 ... 28 >>
На страницу:
5 из 28
Настройки чтения
Размер шрифта
Высота строк
Поля

|ch

| = |nch

|; (2.6)

|ch

| = |nch

|;

|ch

| = |nch

|;

|nch

| = |ch

|;

|nch

| = |ch

|.

Отметим и то, что симметричная пара может состоять либо только из нечетных чисел, либо только из четных чисел, но ни как по-другому, т.е. пара (a

,b

) не может иметь одновременно разную чётность. Этот очевидный факт является очень важным и в дальнейшем будет использован. Чтобы увидеть правильность сказанного, следует внимательно посмотреть на выражения (2.4), так как в правых их частях стоят четные числа, и, следовательно, суммы левых частей должны быть также четными, что возможно только тогда, когда два слагаемых в левых частях будут одновременно нечетными или четными.

Докажем следующую небольшую лемму.

Лемма 2. Любое четное число может быть однозначно отнесено к натуральному числу вдвое меньшему данного четного числа.

Доказательство. Действительно, так как четное число n выражается формулой ch=2n, то разделив его на двойку, получим утверждаемое натуральное число, что и доказывает высказанное утверждение.

Рассмотренные выше соображения позволяют сформулировать следующее важное утверждение или теорему.

Теорема 1. Любое число n представимо суммой чисел любой симметричной пары, отнесенной к числу 2n, вдвое меньшему данному числу, т.е. равной удвоенному значению числа n, находящемуся на середине отрезка числовой оси [0;2n].

Доказательство. Действительно, согласно выражению (2.3) на числовой оси [0;2n] можно составить n симметричных пар (a

,b

) таких, что a

+ b

= 2n. Таким образом, утверждение теоремы 1 доказано.

Из сформулированной выше теоремы следует две леммы, доказательства которых очевидны.

Лемма 3. Любое четное число 2n представимо суммой симметричных пар четных или нечетных чисел, количество которых равно n.

Доказательство указанного утверждения фактически приведено выше.

Из рассмотренного выше исследования симметричных пар чисел нас интересует класс нечетных симметричных пар чисел, среди которых класс симметричных простых чисел.

3. Симметричные пары простых чисел

Рассмотрим в первую очередь интересный класс симметричных пар чисел из множества нечетных чисел.

В предыдущем разделе было показано, что числа симметричной пары всегда имеют одинаковую четность, т.е. состоят либо из двух нечетных чисел, либо из двух четных чисел.

Исследуем подмножества симметричных пар нечетных чисел, сумма которых, конечно, является четным числом.

Как было показано в предыдущем разделе, оба подмножества нечетных чисел nch

множества A и nch

множества B имеют однозначное соответствие и, следовательно, имеют одинаковые мощности или то же самое равное количество элементов.

Выделим в каждом из них еще по два подмножества, а именно:

Подмножество составных нечетных чисел S и подмножество простых чисел P, которые запишем следующими выражениями

nch

= S

U P

;

nch

= S

U P

, (3.1)

где S
<< 1 2 3 4 5 6 7 8 9 ... 28 >>
На страницу:
5 из 28