Оценить:
 Рейтинг: 4.67

Шипение снарядов

Год написания книги
2012
<< 1 ... 3 4 5 6 7
На страницу:
7 из 7
Настройки чтения
Размер шрифта
Высота строк
Поля

Роль воронки выполнит мениск воды. Желательна большая его глубина, а значит, стенки трубки должны хорошо смачиваться. Стеклянная неприятна тем, что разлетается на осколки. Хорошо смачиваемый эбонит редок, но выход есть: вкладыш из бумаги в трубке из любого диэлектрика. Калибр «кумулятивного заряда» (внутренний диаметр трубки) – 6–8 мм.

О воде. Та, что из-под крана – не годится: она хорошо проводит и ток пройдет по всему объему. В воде же для инъекций, приобретенной в аптеке, солей нет и вся энергия разряда выделится в области пробоя, смоделировав взрыв.

Разряд в воде между шайбой и жилой кабеля, обеспечит высокое напряжение – для этого и нужен телевизор, в котором есть высоковольтный источник. Работа с напряжением 25 киловольт, которое подается на кинескоп, требует навыка, поэтому, если есть источник на 6–7 киловольт, лучше использовать его (рис. 2.25). Для желательной в опытах энергии разряда в 10 Дж, напряжение U имеющегося у вас источника определит и емкость С конденсатора (E=CU /2). После каждого опыта конденсатор обязательно надо закорачивать, чтобы не «дернуло» остаточное напряжение на нем, но вообще-то этого все равно не избежать. Если нет серьезных проблем с сердцем, «встряхивание» будет безвредным и наилучшим образом научит правилам безопасной работы с высоким напряжением.

Рис. 2.25

Установка для формирования водяной кумулятивной струи включает (слева):

1 – источник высокого напряжения;

2 – высоковольтный конденсатор;

3 – зачищенный на половину длины радиочастотный кабель

4 – трубка с налитой водой.

В центре – пробитие слоя желатина струей воды и крупный план этой струи. КС образовалась из вогнутого мениска воды, при воздействии на него ударной волны от разряда. Энергия конденсатора коммутируется при помощи стержня из оргстекла, сближающего электроды (стержень и искра разряда при коммутации видны в нижнем правом углу снимка); справа – выход из слоя желатина вошедшей в него под углом кумулятивной струи

Соединим кабель и трубку обрезком шланга для душа. Воду нальем с помощью шприца: в ней не должно быть пузырьков, они исказят течение. Убедимся, что мениск образовался на расстоянии примерно в сантиметр от шайбы.

Зарядим конденсатор и замкнем контур. В воде пробой разовьет большое давление и образуется ударная волна, которая и «схлопнет» мениск.

Тонкую и быструю КС вы обнаружите по тычку в протянутую в метре над установкой ладонь или по водяным каплям на потолке. Увидеть ее невооруженным глазом сложно, но можно получить снимки (на черном фоне). Для этого подойдет камера CASIO Exilim Pro EX-F1, позволяющая снимать видео со скоростью до 1200 кадров в секунду. Правда, искра «подсвечивает» КС и «бронепробитие» можно заснять и недорогим фотоаппаратом, открывая в темноте его затвор и затем замыкая контакт. В качестве «брони» подойдет желатин.

Настроив установку, можно экспериментировать:

– менять толщину и угол расположения слоя желатина, посмотреть, как влияет на «бронепробитие» разделение преграды на несколько разнесенных слоев;

– менять диаметр трубки и расстояние между воронкой и точкой «взрыва», наливая в трубку разное количество воды;

– устанавливать в трубке на тонких ниточках «линзы» из пластилина, меняя тем самым форму фронта УВ, воздействующей на воронку;

– не ставить в трубку бумагу и сделать мениск выпуклым – тогда КС не образуется, а в разные стороны полетят брызги.

Полезно знать выводы теории кумуляции:

– если параметры удара КС обеспечивают ожижение материала преграды, то дальнейшее повышение ее скорости не имеет смысла – бронепробитие зависит в основном от длины струи;

– оно же зависит от соотношения плотностей брони и КС.

Понятно, что неудача попытки пробить фольгу будет обусловлена не неблагоприятным соотношением плотностей, а тем, что водяная струя установки слабовата для ожижения алюминия…

Ну, а по настоящей броне бьют не водой, а металлом: если угол раствора конусной облицовки кумулятивного заряда значителен (рис. 2.26) или облицовка представляет собой полусферу, то образуется не тонкая струя, а компактное ударное ядро (рис. 2.27). Применение ударных ядер во Второй мировой было не столь обширным, как КС. Связка самолетов «Мистель» (рис. 2.28) управлялась пилотом расположенного сверху истребителя. После расстыковки, нижний самолет летел в неуправляемом режиме, у цели в нем подрывался огромный заряд, ударное ядро которого должно было сокрушить фермы моста или проткнуть насквозь корабль противника. Применение «Мистель» было редким и малоуспешным, как и применение ударных ядер против тяжелых бомбардировщиков. Только много позже, когда появились изощренные системы наведения, способные «обнюхать» бронецель и уязвить ее в слабозащищенное место (рис. 2.29), реализовались возможности ударных ядер: проигрывая кумулятивной струе в бронепробитии, они обеспечивают значительно больший «заброневой» эффект. Результаты компьютерного моделирования выглядят иногда не менее живописно (рис. 2.30), чем фотографии, а энтузиасты вычислительных методов, бывает, похваляются, что могут рассчитать «все». Возможно, это и так, но доверять их результатам стоит ровно настолько, насколько можно доверять зависимостям, описывающим процесс и численным значениям величин, вводимым в расчеты. Иными словами: компьютерное моделирование не дает кардинально новых знаний, а позволяет подробно просмотреть варианты, не выходящие за рамки того, что уже известно.

Рис. 2.26

При взрыве заряда с облицовкой, угол раствора которой значителен, формируется поражающий элемент называемый ударным ядром (справа от облицовки). Правда, на ядро он мало похож, и автор полагает, что более точен английский термин Explosively Formed Projectile – «снаряд, формируемый взрывом». Ударное ядро может пробить броню толщиной до 0,8 диаметра заряда, но обеспечивает значительный заброневой эффект (справа: ядро прорвалось сквозь броню)

Рис. 2.27

Если облицовка кумулятивной выемки – полусферическая, то образуются поражающий элемент с промежуточными, по сравнению с элементами, формируемыми из остроконических и тупоконических облицовок, характеристиками – как по бронепробитию, так и по заброневому действию. Заряды с полусферическими облицовками применяются в основном для инженерных боеприпасов. Слева – серия рисунков, поясняющих процесс образования ударного ядра, справа – каверна в броне после попадания ударного ядра

Компьютеров в воюющей Германии не было, но кумуляция и другие полезные явления исследовались тщательно, с немецкой педантичностью. В германских оружейных фирмах существовала эффективная система поощрения сотрудников, генерировавших новые идеи: зарплата их достигала 11000 райхсмарок ($4500 по тогдашнему курсу)[26 - С учетом инфляции, этот уровень превышает и современную оплату профессора в университете США ($10000). В послевоенные годы потенциал поиска новых решений был в значительной мере утрачен. Автор убедился в этом, посещая по приглашениям известные германские и австрийские оружейные фирмы в 90-е годы, где его собеседники придерживались сходной точки зрения. На вопрос о причинах один из них упомянул утрату преемственности (оккупационными властями все оружейные разработки были прекращены) и низкий социальный статус специалистов-оружейников в настоящее время: с их зарплат (примерно 3 тыс. евро) взимаются все налоги, в то время как живущие на пособия налоги не платят и пользуются многочисленными льготами, из-за чего реальные доходы исследователя немногим превышают таковые деклассированных лиц.] – выше, чем у дирекции. Конечно, суетились вокруг неутомимые бойцы невидимого фронта, случались и аресты (бдительностью-то «дела» не испортишь!) но о том, что стимулом был не страх, а поощрение, свидетельствует ряд новаторских решений, многие из которых не потеряли актуальности и сейчас. Вот только предприняты были эти усилия поздновато – первые результаты их подоспели «за пять минут до двенадцати»…

Рис. 2.28

Связка самолетов «Мистель». В носовой части Ju-88A4 – длинная штанга с ударным взрывателем, обеспечивающая подрыв заряда на фокусном расстоянии от цели. Формирование ударного ядра заканчивается на этом расстоянии, но далее, в отличие от кумулятивной струи, сформированный взрывом снаряд остается компактным и сохраняет поражающие свойства на значительных (до сотен метров) дистанциях. Сфотографирована модель, поскольку черно-белые фотографии «Мистель» военных лет – плохого качества

Зато и через несколько десятилетий после войны научные программы многих стран базировались на заделе, созданном немецкими учеными. Так, в плане исследований на 1947 г., представленном на утверждение президенту США, до 80 % разделов содержали аннотации германских результатов.

Рис. 2.29

Слева: разработанный в 90-х годах 155-мм германский артиллерийский снаряд и его кассетный элемент. Купол парашюта ассиметричен, за счет чего боевой элемент вращается, сканируя местность под собой по спирали. Он не имеет органов управления и не наводится на цель, но когда та оказывается в его «прицеле» – стреляет (почему и назван самоприцеливающимся). Справа: рисунок-кинограмма поражения танка в решетку воздухозаборника двигателя ударным ядром. Основные цели кассетных артиллерийских снарядов – колонны бронетехники, двигающиеся к фронту

В Германии действовали десятки научных учреждений и полигонов. Примером может служить Luftfahrtforschungsanstalt, который располагал несколькими видами аэродинамических труб, в том числе – со сверхзвуковыми режимами течения. Даже в самые последние недели войны продолжалось строительство еще одной, самой крупной. На моделях (рис. 2.31) изыскивались оптимальные формы снарядов для ствольных и реактивных систем.

Рис. 2.30

Слева – результат компьютерного моделирования процесса пробития брони ударным ядром. Откольные элементы – острые стальные пластинки – весьма опасны для тех, кто находится за подвергшимся ударному воздействию стальным листом (справа)

К концу войны артиллерия осталась наиболее действенным огневым средством, которое германская армия противопоставляла наступательным замыслам противника. Замена или существенная модернизация наиболее массовых артиллерийских систем требовала, помимо материальных затрат, значительного времени на переучивание расчетов и перестройку системы снабжения. Проигрывавшая войну Германия не располагала ни временем, ни достаточными ресурсами, поэтому основные усилия в области повышения эффективности были связаны с разработкой новых боеприпасов – они небольшими партиями поступали во фронтовые части сразу после ограниченного числа отстрелов. Но определение их эффективности было затруднено: противник наступал.

Рис. 2.31

Модели артиллерийских снарядов и неуправляемых ракет, предназначенные для исследований в аэродинамической трубе

Особо следует упомянуть о реактивной артиллерии, поскольку эту тему до сих пор окружает сонм мифов. Германские войска располагали еще до начала войны вполне отработанными образцами реактивных минометов «Небельверфер 35, 38 и 41» (цифры обозначают год принятия на вооружение) а также химическими, зажигательными и осколочно-фугасными боеприпасами к ним. В дальнейшем вместо 100 и 150 миллиметровых «Небельверферов» первых серий появились 210 (42 г.), 280, 300 (43 г.) и 320 миллиметровые. Для них были разработаны пяти– и шестиствольные пусковые установки, однако реактивные гранаты могли запускаться также из укупорочных ящиков. «Небельверферы» применялись при штурме Севастополя, под Сталинградом, а также при подавлении Варшавского восстания.

В вермахте хорошо знали не только о преимуществах реактивных снарядов, но и о недостатках, в первую очередь – о значительном рассеянии при стрельбе[27 - Вот как оценивал эрэсы начальник Главного артиллерийского управления, маршал артиллерии Н.Д. Яковлев: «Конечно, по площадям они действовали прекрасно: снаряд мощный, тяжелый… Но ведь безусловного поражения важных целей «катюша» в отличие от ствольных систем не гарантировала. Поэтому при планировании операций мы тщательно считали выделяемые пушки и гаубицы, а «катюши» вообще не учитывали. То есть как бы и не было их…»*. Техника-Молодежи, 1993 г. № 3, с. 23.] (взгляните на правую часть рис. 2.32: факелы взлетевших «эрэсов» указывают, что разброс курсовых углов их траекторий значителен). Немецкие специалисты не усматривали никаких мистических тайн в советских реактивных снарядах – они попали к ним в руки уже ранней осенью 1941 г. К концу же войны запас трофеев был столь велик, что советскими установками и их изготовленными в Чехословакии[28 - Тогда именовавшейся «протекторатом Богемии и Моравии»] копиями стали оснащать бронетранспортеры вермахта.

Рис. 2.32

Даже если бы не были заметны отличия формы, в которую одеты расчеты, можно легко определить, чья батарея стреляет: топливо реактивных снарядов германских «Небельверверов» и «Вурфгеретов» – смесевое, дающее при сгорании много дыма. Топливо советских «эрэсов» – бездымный порох, и их факелы – яркие, чистые

В советских реактивных снарядах топливом служил бездымный порох, а в германских – смесевые составы, при производстве которых приобретался опыт получения все более крупноразмерных шашек. Немалые и по современным меркам (диаметр – до 500, длина – до 1000 мм), высококачественные заряды нашли применение в ускорителях старта и двигателях таких ракет, как неуправляемая «Райнботе» (рис. 2.33), призванная заменить авиацию при решении задач на оперативную глубину. Четыре работающие на смесевом твердом топливе ступени сообщали боеголовке скорость, обеспечивавшую достижение дальности в 220 км, но вес ВВ (менее 20 кг) был недостаточен, что и показало боевое применение по порту Антверпена в ноябре 1944 г. После войны аналогичные системы («Луна» и «Онест Джон»), но с ядерными и химическими боевыми частями были созданы и победителями.


<< 1 ... 3 4 5 6 7
На страницу:
7 из 7