108 минут, изменившие мир Антон Иванович Первушин Книга известного российского писателя Антона Первушина рассказывает про подготовку первого полета человека в космос. Почему именно СССР, несмотря на технологическое отставание от США, смог первым запустить спутник и человека в космос? В книге впервые будет опубликовано правдивое описание полета, сделанное самим Гагариным, и выверенная, исторически точная запись полета с пояснениями происходящего. Антон Первушин 108 минут, изменившие мир Предисловие Современность диктует свои законы. Романтика дальних странствий и великих открытий осталась в прошлом. Континенты, архипелаги, острова и океаны нанесены на карту и изрядно освоены. Кажется, нет на планете места, где еще не побывал человек. Сегодня мы уже не думаем о том, как расширить принадлежащие нам земли, а сосредоточились на повышении жизненного комфорта. Из этого проистекают прагматизм и даже цинизм современного обывателя. А те, кто сохранил в душе романтику, компенсируют ее исчезновение участием в ролевых играх или экстремальных видах спорта. И все бы хорошо, но отсутствие новых рубежей и явно выраженной конкуренции между державами за ресурсы (сегодня и державы, и ресурсы куда выгоднее покупать, нежели завоевывать) ведет к стагнации человеческой культуры: не хватает новых революционных образов и смыслов, а при формировании настоящего мы всё больше ориентируемся не на будущее, а на прошлое. В связи с этим футурологи говорят о «конце истории», культурологи – о «перманентном кризисе», а социологи – о «торжестве общества потребления». И лишь изредка мы вспоминаем, что есть еще небо и звезды над головой, что существует необозримое пространство, до которого человечество сумело дотянуться, но в силу разнообразных причин приостановилось на величественном пути освоения макрокосма. Одним из поводов вспомнить об этом стал День космонавтики, который отмечают не только в России. Например, в Соединенных Штатах Америки – в стране, которую даже многие ее граждане считают «цитаделью прагматизма», – празднуют в апреле «ночь Юрия» («Yuri's Night»), названную так в честь Юрия Алексеевича Гагарина и его полета на корабле «Восток». Образ Юрия Гагарина – один из немногих по-настоящему светлых образов в жестокой истории ХХ века. И он уникален. В самом деле, разве найдется другой человек, который в одночасье стал олицетворением нового и блистательного пути для целого человечества? Улыбка Гагарина объединяет всех, возвращает романтику, заставляет хотя бы на короткий миг забыть о сиюминутном и задуматься о будущем. А еще Гагарин – гордость нашей Родины. Стало типичным в последние годы – как только начинают вспоминать мрачные подробности советской действительности, тут же находится оппонент, который скажет о спутнике и Гагарине. Можно подумать, подвиг когда-нибудь оправдывал преступление… И все же какая-то доля справедливости в таком оправдании есть. В прошлом веке многие народы показали себя не с самой лучшей стороны, а потому оценивать их ретроспективно имеет смысл не по злодеяниям (их нужно учитывать и помнить, но не строить на их основе современные отношения), а по вкладу в развитие цивилизации. И тут советские люди, не только русские, могут дать многим народам большую фору. Пренебрегая комфортом, презрев прагматизм, зачастую жертвуя самым дорогим, в том числе здоровьем и жизнью, они сумели сделать невозможное – восстановили из руин самую большую страну в мире и при этом совершили фантастический рывок к звездам. Если бы это сделали немцы или американцы, мало кто удивился бы, но Советский Союз, который всегда представлялся отстающей и даже варварской страной, вдруг разом вырвался в лидеры. Здесь есть чем гордиться! Однако удивительный парадокс заключается в другом. Волею судьбы Россия стала наследницей СССР, во многом сохранив космический задел и имея прекрасные шансы остаться хотя бы на этом поле ведущей державой, – однако чем дальше, тем больше статус космонавтики в нашей стране девальвируется. И улыбка первого космонавта уже поблекла, как на старом выцветшем снимке, и говорят о Гагарине всё реже, и всё меньше молодых россиян знают, кто это такой, и понимают, зачем нужно летать к звездам. А вместе с этим Россия теряет последнюю гордость и, возможно, последний шанс сохраниться в XXI веке в качестве сильного государства, определяющего контуры будущего. И не стоит ссылаться на прагматичный дух эпохи – забывчивость и пренебрежение достижениями отцов не имеют объективных причин. Сегодня у нас снова есть повод вспомнить торжествующую улыбку Юрия Гагарина. 2011 год объявлен официальным Годом космонавтики, и его будут отмечать даже те, кто очень далек от проблем ракетно-космической отрасли. Но куда важнее не только вспомнить, а до мельчайших деталей воспроизвести историю этого полета, чтобы разобраться наконец, что же он для всех нас значит. Настоящая книга появилась на свет не только благодаря информационному поводу. Дело в том, что сокрытие правды о полете Юрия Гагарина началось еще до самого полета. Люди старшего поколения прекрасно помнят, что ничего не слышали ни о «Востоке», ни о членах первого отряда космонавтов до 12 апреля 1961 года. И до самой смерти в январе 1966 года было засекречено имя главного конструктора ракетной техники – Сергея Павловича Королёва. Объяснялось это сокрытие соблюдением государственной тайны «в интересах обороноспособности», однако прошло уже пятьдесят лет, Советский Союз прекратил свое существование, а многие подробности одного из самых ярких событий в нашей истории найти не просто трудно, а невозможно. Подобное положение вещей выглядит ненормальным. В этой книге я попытался скрупулезно собрать, просеять через сито верификации и предельно конкретно изложить рассекреченную информацию, связанную с историей подготовки и осуществления первого полета человека в космос. Не ищите здесь биографических деталей и публицистических отступлений. Не будет и забавных анекдотов из жизни космонавтов. Об этом тоже стоит написать книгу, но как-нибудь в другой раз. Перед вами своего рода энциклопедия по первому полету, поэтому я разбил ее на тематические главы-статьи, в хронологическом порядке описывающие те элементы ракетно-космической инфраструктуры, без которых полет был бы невозможен: «Ракета», «Космодром», «Управление», «Корабль», «Космонавт». В главе «Полет», как следует из названия, я даю подробное описание самого полета, наложив его на полную расшифровку переговоров Юрия Алексеевича Гагарина с Землей, привязанную к московскому времени. При работе над книгой я пользовался только открытыми источниками и в отдельных случаях при сильных разночтениях был вынужден принимать волевое решение, выбрав ту версию давних событий, которая представляется мне наиболее убедительной с позиций технической логики и здравого смысла. Варианты, «конспирологические» версии и оставшиеся вопросы ищите в разделе «Примечания». К сожалению, я не смог назвать в этой книге имена всех, кто работал над созданием ракеты, космодрома, корабля и системы управления и обеспечил триумфальный полет. В этом смысле моя работа очень далека от полноты. Но прочитать подробнее о трудовом подвиге этих людей вы сможете в книгах и статьях, список которых приведен в самом конце. В работе над книгой мне помогали, вольно или невольно, самые разные люди, предоставив редкие свидетельства очевидцев и материалы, которые не найти ни в одной из библиотек. Пользуясь случаем, я хотел бы поблагодарить за эту неоценимую помощь Андрея Балабуху, Елену Бойцову, Янину Грошеву, Виктора Ефимова, Александра Железнякова, Аллу Качурину, Ирину Кулагину, Валерия Куприянова, Виталия Лебедева, Игоря Лисова, Дмитрия Манта, Сергея Манта, Игоря Маринина, Михаила Охочинского, Тимофея Прыгичева и Сергея Хлынина. Спасибо вам! И – с Днем космонавтики! Антон Первушин Глава 1 Ракета 1.1 Формула Циолковского Отсчет истории космонавтики принято вести с 1903 года. Именно тогда в майском номере журнала «Научное обозрение» была опубликована статья калужского ученого-самоучки Константина Эдуардовича Циолковского[1 - Циолковский, Константин Эдуардович (1857–1935) – признанный основоположник теоретической космонавтики, ученый, мыслитель, писатель-фантаст. Родился в семье лесничего. После перенесенной в детстве скарлатины почти полностью потерял слух; глухота не позволила продолжать учебу в школе, и с 14 лет он занимался самостоятельно. С 16 до 19 лет жил в Москве, изучал физико-математические науки по циклу средней и высшей школы. В 1879 году экстерном сдал экзамены на звание учителя. К этому времени относятся первые научные исследования К. Э. Циолковского. Не зная об уже сделанных открытиях, написал работу «Теория газов», в которой изложил основы кинетической теории газов. Вторая его работа, «Механика животного организма», получила благоприятный отзыв И. М. Сеченова, и К. Э. Циолковский был принят в Русское физико-химическое общество. Основные работы К. Э. Циолковского после 1884 года были связаны с четырьмя большими проблемами: научным обоснованием цельнометаллического аэростата (дирижабля), обтекаемого аэроплана, поезда на воздушной подушке и ракеты для межпланетных путешествий. Теоретические исследования Циолковского показали возможность достижения космических скоростей. Он первым изучил вопрос о ракете – искусственном спутнике Земли и высказал идею создания околоземных станций. Циолковский выдвинул ряд идей, которые нашли применение в ракетостроении: газовые рули из графита для управления полетом ракеты; использование компонентов топлива для охлаждения стенок камеры сгорания и сопла двигателя; насосная система подачи компонентов топлива; оптимальные траектории спуска космического аппарата при возвращении из космоса.] «Исследование мировых пространств реактивными приборами». В ней ученый показал, что полеты в космос могут быть осуществлены только при помощи ракет с двигателями на жидком топливе. У открытия Циолковского есть предыстория. Активное развитие воздухоплавания и первые попытки создать аппарат тяжелее воздуха, предпринятые в XIX веке, способствовали появлению проектов межпланетных кораблей. Фантасты с энтузиазмом ухватились за новую идею, тем более что в мифологии и предшествующей литературе можно было встретить описания сказочных путешествий на Луну и планеты. Не заставили себя ждать и деятельные изобретатели. Однако на пути в космос предстояло преодолеть первое и, пожалуй, самое главное препятствие – земную гравитацию. Еще в 1687 году знаменитый английский физик Исаак Ньютон доказал[2 - Свои выкладки Исаак Ньютон изложил монографии «Математические начала натуральной философии» (лат.: Philosophiae Naturalis Principia Mathematica, 1687). Ньютон поставил следующий мысленный эксперимент. Представьте себе высочайшую гору, пик которой находится за пределами атмосферы. Вообразите пушку, установленную на самой ее вершине и стреляющую горизонтально. Чем мощнее заряд используется при выстреле, тем дальше от горы будет улетать ядро. Наконец при достижении некоторой мощности заряда ядро разовьет такую скорость, что не упадет на землю вообще, выйдя на орбиту – сила притяжения для него уравновесится центробежной силой.], что для выхода на околоземную орбиту необходимо развить как минимум первую космическую скорость – 7,91 км/с, а для полета к Луне и другим планетам требуется уже вторая космическая скорость – 11,2 км/с. Но как достичь таких скоростей? К середине XIX века были хорошо известны пороховые ракеты, однако их скорость и управляемость оставляли желать лучшего. Зато артиллерия добилась немалых успехов – появились нарезные орудия, обеспечивающие высокую кучность стрельбы на расстоянии нескольких километров. При этом считалось, что чем больше ствол и пороховой заряд, тем большую скорость разовьет снаряд. Более поздние исследования показали, что максимальная скорость, которую может развить артиллерийский снаряд, лишь ненамного превышает 2 км/с, а увеличение ствола и размера заряда вовсе не способствует росту эффективности – снаряд летит дальше и быстрее, но не достигает теоретически ожидаемых результатов[3 - И. Стержнев в монографии «Артиллерийские орудия кратного действия (1944–1948)» сравнивает две пушки: русскую серийную образца 1902 года и немецкую сверхдальнобойную пушку. При этом получается, что при увеличении заряда в 14,4 раза по сравнению с пушкой 1902 года сверхдальнобойная пушка дает прирост скорости снаряда не в 14,4 раза, а только в 2,7 раза.]. Однако в XIX веке на артиллерию возлагались большие надежды, и поэтому не приходится удивляться, что первый технически обоснованный проект полета в космос был связан с пушками. В 1865 году вышел третий роман быстро набиравшего популярность французского писателя Жюля Верна «С Земли на Луну прямым путем за 97 часов 20 минут»[4 - Роман Жюля Верна о полете на Луну является первой частью дилогии, состоящей из двух романов: «С Земли на Луну прямым путем за 97 часов 20 минут» (фр.: De la Terre a la Lune Trajet Direct en 97 Heures 20 Minutes, 1865) и «Вокруг Луны» (фр.: Autour de la Lune, 1869).]. В романе описывалось орудие длиной 274 м и весом 68 тыс. т. В качестве взрывчатого вещества использовался пироксилин в количестве 164 тыс. т. Сначала предполагалось при помощи этого орудия послать к Луне снаряд без пассажиров, но потом внутри необыкновенного ядра была устроена каюта, в которой решились отправиться в космическое путешествие трое смельчаков. Разумеется, в романе старт к Луне прошел удачно, а межпланетные путешественники не только выжили, но и отправились в полный приключений полет к соседнему небесному телу. Однако в реальности дела обстояли бы намного хуже. Допустим, полый снаряд, выпущенный из такой пушки, развил вторую космическую скорость. Однако элементарный расчет показывает, что его ускорение на самом первом и самом коротком отрезке пути по пушечному жерлу оказалось бы столь велико, что все тела внутри приобрели бы вес в 60 тыс. раз больший, чем вес самого тела. То есть пассажиры испытали бы ударную перегрузку в 60 тыс. g[5 - Перегрузка – безразмерная величина. Но в популярной литературе в качестве единицы ее измерения используется g (же) – усредненное для Земли ускорение свободного падения (9,81 м/с ). Применяя эту единицу, легко видеть, насколько ускорение движущегося тела выше ускорения свободного падения.]. Жюль Верн догадывался, что на описываемых в романе межпланетных путешественников будет воздействовать сильная перегрузка, и даже снабдил снаряд примитивным амортизирующим устройством, полагая, что оно поможет им отделаться легкими ссадинами и ушибами. В XIX веке ученые еще не могли сказать, какую перегрузку способен выдержать человек, но чудовищность названного числа пугала, и, критикуя проект Верна, исследователи писали, что пассажиров такого снаряда буквально размазало бы по полу. И были недалеки от истины – сегодня доподлинно установлено, что смертельной для человека является ударная перегрузка свыше 300 g[6 - Переносимость перегрузки напрямую зависит от времени ее действия. К примеру, перегрузку 4,5 g может переносить длительное время самый обыкновенный человек. Тренированный и здоровый человек способен выдержать перегрузку в 8 g, если она не будет длиться свыше пяти минут. Пилот самолета при катапультировании испытывает ударную перегрузку в 20–25 g, но длится она секунды. Спортсмены при экстремальных прыжках в воду выдерживают перегрузку в 90-100 g. Рекорд по перенесенной перегрузке принадлежит гонщику «Формулы-1» Дэвиду Перли, который при аварии в 1977 году испытал воздействие ударной перегрузки в 179,8 g и остался жив.]. Однако персонажей романа поджидала еще одна опасность – сопротивление воздуха. Ведь оно возрастает куда быстрее, чем скорость снаряда. А кроме того, чем быстрее летит тело, тем оно быстрее нагревается и разрушается – свидетельством служат регулярные метеорные дожди. Сопротивление воздуха на выходе из пушки Жюля Верна при указанном им ускорении в буквальном смысле остановило бы снаряд, а жерло разорвало бы на части. Несмотря на эти серьезные недостатки, проект французского писателя вызвал общественный резонанс. Его обсуждали, и даже выдвигались варианты исправления ситуации. Если сделать орудие длиной в 300 км, удалить из ствола воздух, дуло «вывести» за пределы атмосферы, а снаряд изнутри заполнить водой, которая является идеальным естественным амортизатором, то теоретически можно обойти все проблемы. Вот только эта теоретическая задача не решаема технически – ни во времена Жюля Верна, ни поныне. Но сама идея захватывала воображение. Позднее многие из основоположников космонавтики признавались, что заняться этой областью их побудил именно фантастической проект «лунной» пушки. Ознакомился с романом и Константин Циолковский. Еще в юности будущий знаменитый ученый увлекся воздухоплаванием, и это предопределило главный предмет его научных интересов – создание более совершенных аэростатов, дирижаблей и летательных машин. Долгое время космонавтика оставалась для Циолковского на втором плане, но любовь к астрономии привела его к проблематике достижимости космических высот и скоростей. Циолковский сразу разглядел все огрехи проекта гигантской пушки и отказался от него. При этом он рассматривал разные способы выхода в космос, сосредоточившись на использовании центробежной силы – идея разгонной эстакады вокруг экватора или гигантской башни была куда перспективнее, но столь же сложна для реализации[7 - Ни один из проектов, которые мы можем найти в рукописях 1878 года, не подходил для земных условий, что К. Э. Циолковский прекрасно понимал. «Веретенообразная башня, висящая без опоры над планетой и не падающая благодаря центробежной силе» и «кольца, с помощью которых можно восходить на небеса и спускаться с них, а также отправляться в космическое путешествие» могли быть построены только на небольших планетах, лишенных атмосферы.]. Хотя в ранних рукописях Циолковского уже описана возможность применения силы отдачи для движения в пустоте[8 - В статье «Свободное пространство», написанной в 1883 году, К. Э. Циолковский излагает способ движения в космической пустоте за счет силы реакции: «Меньшая из масс приобретает скорость, во столько раз большую скорости большой массы, во сколько раз масса большого тела больше массы меньшего тела». На этом принципе ученый предложил новую конструкцию движителя для космического корабля. Это пушка, снаряды которой создают силу отдачи. Меняя положение ствола пушки, можно лететь в любом направлении.], он еще не думал о ракетах. В 1896 году калужский ученый ознакомился с брошюрой Александра Петровича Федорова «Новый способ воздухоплавания, исключающий воздух как опорную среду»[9 - Федоров, Александр Петрович (1872-?) – русский изобретатель, потомственный дворянин, журналист. В 1896 году Федоров написал брошюру «Новый принцип воздухоплавания, исключающий атмосферу как опорную среду». Что подвигло его на это, доподлинно не известно. Став журналистом, популяризировал технические новинки, иногда писал об авиации, но ни разу не вспомнил о своем давнем изобретении, которое подтолкнуло К. Э. Циолковского к базовой идее осуществления космических полетов с помощью ракет на жидком топливе.]. В ней молодой изобретатель излагал принцип действия придуманного им «ракетолета», имеющего несколько двигателей: одни служили ему для подъема, другие – для движения в горизонтальном направлении, третьи выполняли роль реактивных рулей. Каждый двигатель состоял из генератора газа и «трубы». Газ под давлением поступал в «трубу» и вырывался наружу, создавая реактивную тягу и тем самым двигая «ракетолет» в противоположную сторону. Идея Федорова поразила Циолковского, позднее он писал: «Она толкнула меня к серьезным работам, как упавшее яблоко к открытию Ньютоном тяготения». В своей работе Федоров не приводил никаких расчетов, и ученому пришлось проделать их самостоятельно. 10 мая 1897 года Константин Эдуардович вывел формулу, которая сегодня по праву носит его имя. Формула Циолковского устанавливает связь между четырьмя параметрами: скоростью ракеты в любой момент времени, скоростью истечения продуктов сгорания из сопла, массой ракеты, массой взрывных веществ[10 - Формула Циолковского выглядит так: V = V ln (М /М ) = V ln (1 + М /M ), где V – конечная скорость летательного аппарата после выработки топлива, V – эффективная скорость истечения продуктов сгорания топлива из сопла, М – начальная масса летательного аппарата (полезная нагрузка + конструкция аппарата + топливо), М – конечная масса летательного аппарата (полезная нагрузка + конструкция), М – масса топлива.]. Допустим, необходимо запустить спутник на околоземную орбиту. Значит, скорость ракеты после исчерпания топлива должна равняться первой космической скорости. Скорость истечения для каждого вещества индивидуальна. Располагая этими двумя величинами, можно перебирать соотношения масс топлива и ракеты – и добиться оптимального значения. Формула сразу дала Циолковскому доказательство того, что полеты к другим планетам посредством ракет возможны. Она же позволила ему установить идеальное топливо для ракеты: если использовать в качестве горючего жидкий водород, а в качестве окислителя жидкий кислород, то грузоподъемность ракеты существенно возрастает. На основе своих расчетов Циолковский написал статью «Исследование мировых пространств реактивными приборами». Ее первая часть и была опубликована в 1903 году. В ней, кроме прочего, описана ракета с прямой дюзой, использующая водородно-кислородное топливо. Главное, что давала такая ракета по сравнению с пороховыми, – возможность ускоряться постепенно, избежав ударных перегрузок при старте. Статья осталась не замеченной широкой публикой, поэтому ее вторая часть увидела свет только через восемь лет – в 1911 году – на страницах журнала «Вестник воздухоплавания». Здесь Циолковский привел результаты своих вычислений по преодолению силы земного тяготения, полету к другим планетам и выдвинул идею автономной системы жизнеобеспечения для космических кораблей. Эту часть статьи Константин Эдуардович завершил фразой, которая ныне считается девизом космонавтики: «Планета есть колыбель разума, но нельзя вечно жить в колыбели». 1.2 Ракеты Оберта О Циолковском и его работах появилось множество публикаций[11 - Первой популярной публикацией о работах К. Э. Циолковского считается статья инженера Владимира Рюмина «На ракете в мировое пространство», опубликованная в 1912 году.], однако подлинное признание к нему пришло только в 1923 году, после того как в советской прессе появились сообщения о ракетных достижениях Германии. Основоположником немецкого ракетостроения по праву считается Герман Оберт[12 - Оберт, Герман Юлиус (1894–1989) – немецкий ученый в области космонавтики и ракетостроения. В Первую мировую войну воевал на Восточном фронте. Получив ранение, вернулся в Трансильванию. Учился в университетах Клужа, Мюнхена, Геттингена и Гейдельберга. В 1924–1938 годы был профессором колледжа в Медиаше, работал в Венском технологическом институте. В 1940 году получил германское гражданство. В 1941–1943 годах был консультантом ракетного центра Пенемюнде, участвовал в создании ракеты «A-4/V-2» под руководством В. фон Брауна. В 1943 году был переведен в Рейнсдорф (Германия), работал на заводах взрывчатых веществ над созданием твердотопливных ракет. В 1945–1948 годах проводил частные исследования в Швейцарии, в 1950–1953 годах жил в Италии, занимался разработкой ракет для военно-морского флота. В 1955 году по приглашению В. фон Брауна приехал в США, работал в Хантсвилле (штат Алабама). Работы Германа Оберта отличались обстоятельностью, он предложил множество технических решений, используемых в ракетостроении и космонавтике до сих пор.]. С юности он занимался проблемами теоретической космонавтики. В десять лет прочитал роман Жюля Верна «С Земли на Луну…» и, проделав с помощью учителя физики простейшие расчеты, понял, что проект космической пушки неосуществим. В четырнадцать лет Оберт пришел к выводу, что космос покорится только ракетам. В пятнадцать лет самостоятельно вывел формулу Циолковского. В восемнадцать лет разработал проект ракеты с жидкостным двигателем. В 1917 году Оберт, будучи на военной службе, сконструировал боевую баллистическую ракету высотой 25 м. Компоненты топлива – этиловый спирт и жидкий кислород – нагнетались в ракетный двигатель с помощью насоса. Для стабилизации полета применялся гироскоп[13 - Гироскоп (от греч. gyros – круг; в старой литературе еще можно встретить название «жироскоп») – устройство, представляющее собой быстро вращающийся (до сотен и тысяч оборотов в секунду) ротор. Используется в системах управления летательных и космических аппаратов, поскольку быстро вращающееся тело сохраняет свое положение в пространстве, а значит, по отклонению от оси гироскопа можно судить о том, насколько отклонился от заданного направления летательный аппарат.]. Таким образом, была намечена принципиальная схема жидкостной ракеты, используемая в конструкторских разработках до сих пор. Расчеты показывали, что спиртовая одноступенчатая ракета улетит дальше любого снаряда, но для космических путешествий непригодна – топливные баки постепенно опорожняются и с какого-то момента становятся бесполезной нагрузкой, не ускоряющей, а замедляющей полет. Оберт нашел выход и летом 1920 года описал проект двухступенчатой ракеты. Первая ступень использовала в качестве топлива пару спирт-кислород, а вторая – водород-кислород. Позднее Герман Оберт обобщил свои изыскания, и в июне 1923 года вышла его монография «Ракета в межпланетное пространство»[14 - В оригинале книга называлась Die Rakete zu den Planeten-raumen.]. Эта книга оказалась первой в мировой литературе, в которой с научной добросовестностью была показана техническая реальность создания больших жидкостных ракет и обсуждались ближайшие цели их практического применения. Привлекали внимание детально проработанные чертежи – ничего похожего в те годы у других пионеров космонавтики просто не было. Благодаря этой книге все увидели, что космонавтика – не только область профессиональных интересов писателей-фантастов, но и вид деятельности, в которой могут проявить свои способности инженеры и промышленники. В Советском Союзе книга Оберта тоже вызвала резонанс. 2 октября 1923 года в газете «Известия» появилась рецензия на нее. Всё это возмутило Константина Циолковского, поскольку в рецензии ничего не говорилось о его работах. Чтобы исправить допущенную несправедливость, в 1924 году он выпустил в виде отдельной брошюры второе издание своей статьи 1903 года и разослал ее заинтересованным лицам. Отдадим должное Оберту – он сразу признал приоритет русского ученого, о чем немедленно раструбили советские популяризаторы. В итоге книга Оберта не только послужила толчком для подтверждения приоритета Циолковского, но и способствовала пропаганде ракетно-космической тематики в Советской России. Следующий труд Германа Оберта под названием «Пути осуществления космического полета»[15 - В оригинале книга называлась Wege zur Raumschiffahrt.] увидел свет в 1929 году. В ней немецкий ученый обобщил и скрупулезно проанализировал свои предыдущие и новые разработки в области ракетостроения. Оберт рассматривал два типа ракет. «Modell В» служила носителем научных приборов для исследования верхних слоев атмосферы, а «Modell E» была предназначена для полета в космическом пространстве. Особый интерес представляет второй тип, поскольку в нем воплотились технические идеи, оказавшие значительное влияние на дальнейшее развитие ракетостроения. «Modell E» – это ракета с одной большой дюзой и широким основанием, к которому прикреплены четыре опоры-стабилизатора. Она состоит из двух частей: первая разгонная ступень работает на спирте и жидком кислороде, а вторая при том же окислителе использует жидкий водород. В верхней части второй ступени размещена каюта с иллюминаторами, позволяющими вести астрономические наблюдения, – Оберт назвал ее «аквариумом для земных жителей». Высота всей ракеты, рассчитанной на двух пассажиров, оценивалась Обертом как «примерно соответствующая высоте четырехэтажного дома». Общий вес заправленной ракеты перед стартом – 288 т. В ходе космического рейса пассажиры могли на время покидать «аквариум» в специальных костюмах, сходных с водолазными. Торможение в атмосфере при возвращении пассажирской кабины на Землю Оберт предлагал осуществлять посредством парашюта или при помощи специальных несущих поверхностей и хвостовых стабилизаторов, позволяющих планировать и таким образом уменьшающих перегрузку при сбросе скорости. Продуманные и технически детализированные работы Германа Оберта произвели фурор. В республиканской Германии и дружественной Австрии за пять лет после издания «Ракеты в межпланетное пространство» вышло более восьмидесяти книг по ракетно-космической технике. Возник своего рода ракетный бум. 11 июня 1927 года, на пике бума, в немецком городке Бреслау (ныне – польский город Вроцлав) собрались несколько человек, увлекавшихся идеей космических полетов, и учредили Общество межпланетных сообщений[16 - Оригинальное название немецкого Общества межпланетных сообщений – Verein fur Raumschiffahrt (VfR). В других странах его часто называли «Немецким ракетным обществом» или «Германским ракетным обществом».]. Почти сразу члены Общества занялись согласованным проектированием небольших ракет. В мае 1929 года популярный режиссер Фриц Ланг, наслышанный об Оберте, пригласил его стать научным консультантом фильма «Женщина на Луне»[17 - Фильм «Женщина на Луне» (нем.: Frau im Mond) снимала киностудия Ufa. Сценарий был основан на одноименном фантастическом романе жены режиссера Фрица Ланга – Теа фон Харбоу.]. Когда Оберт приехал в Берлин, возникла еще одна идея – в качестве рекламного трюка запустить перед премьерой настоящую ракету. Ланг ее одобрил, и из бюджета фильма было выделено 10 тыс. рейхсмарок. Назначили дату старта – 19 октября 1929 года. Рекламный отдел киностудии тут же распространил эту информацию. О ракете Оберта начала усиленно писать пресса. Хуже обстояло дело с самой ракетой. Ведь одно дело – выдвинуть идею и даже обосновать, и совсем другое – воплотить ее в металле. Принцип действия жидкостного ракетного двигателя кажется простым. Из одной емкости в камеру сгорания поступает горючее (жидкий водород, бензин, керосин, спирт), из другой – окислитель (жидкий кислород), обеспечивающий горение. Смесь в камере поджигается, продукты сгорания вылетают через сопло. Но реализовать этот принцип – сложнейшая задача. Камера сгорания работает в условиях высоких температур, давлений и скоростей. Подобная среда не встречается ни в природе, ни в промышленных установках, поэтому к моменту появления идеи жидкостных ракет наука не изучала эти сложные процессы. Однако, чтобы изучить их, нужно иметь хотя бы один работающий двигатель. А его не было. Замкнутый круг. Проведя предварительные расчеты, Оберт выбрал в качестве горючего бензин. В то время считалось, что смешение жидкого кислорода с бензином тут же приведет к взрыву. Желая переломить такую точку зрения и добиться устойчивого горения, Оберт начал опыты не с конкретным прототипом двигателя, а в «академической» постановке. Он провел серию экспериментов, изучая поведение тончайшей струйки бензина, направленной в сосуд с жидким кислородом. И однажды взрыв все-таки произошел – ударной волной ученого швырнуло через всю лабораторию. У Оберта лопнула барабанная перепонка и был поврежден левый глаз. Для полного излечения врачи посоветовали ему уйти в отпуск, но упорный ученый продолжил эксперименты. В итоге Герман Оберт создал уникальную коническую камеру сгорания, названную Kegeld?se[18 - Kegelduse переводится с немецкого как «коническое сопло». Сегодня ее внешний вид кажется необычным. По принципу своей работы первая камера сгорания Германа Оберта сильно отличалась от современных: топливо подавалось в камеру не в дальней от сопла части, а впрыскивалось со стороны сопла навстречу продуктам сгорания.]. Несмотря на опасения, камера показала стабильную работу. По сути, это был первый в Европе действующий ракетный двигатель на жидком топливе. Возникали проблемы и другого рода. Требовалось проверить аэродинамические характеристики ракеты. Обычно это делается путем продувки в аэродинамической трубе, но такой эксперимент был очень дорогим и отнял бы много времени. Оберт решил, что качественное представление может дать опыт, сводящийся к наблюдению характера падения модели с большой высоты. Была найдена соответствующая фабричная труба и с нее сброшена деревянная модель ракеты – ее даже удалось сфотографировать в этот момент. «Рекламщики» продемонстрировали смекалку: перевернули фотографию и, сделав таким образом падающую ракету взлетающей, сообщили о «первом экспериментальном старте ракеты Оберта». Построить полноценную ракету к премьере «Женщины на Луне» Оберт так и не успел. Он допустил перерасход средств и был вынужден на несколько месяцев покинуть Германию. В конце концов Общество межпланетных сообщений выкупило у киностудии незаконченную ракету, двигатель Kegeld?se и пусковую установку. В начале 1930 года состоялась конференция, на которой обсуждались дальнейшие планы. В итоге было решено строить упрощенную ракету, которая получила название Mirak[19 - Ракета Mirak (сокр. от Minimumrakete) имела несколько модификаций и разрабатывалась под руководством немецкого изобретателя Рудольфа Небеля. По современным представлениям вид ракеты был весьма необычен. Подобно пороховой ракете, Mirak состояла из «головки» и «направляющей ручки». Последняя представляла собой длинную тонкую алюминиевую трубу, служившую в качестве бака для бензина. «Головка» была сделана из литого алюминия и содержала бак с жидким кислородом.]. В июле двигатель Kegeld?se успешно испытали на стенде. Теперь предстояло запустить саму ракету. 27 сентября 1930 года Общество приобрело небольшой участок земли, расположенный в районе Рейникендорфа (пригород Берлина). Там возник испытательный полигон, вошедший в историю как Raketenflugplatz – Ракетодром. До конца 1933 года на ракетодроме было осуществлено 87 стартов ракет Mirak и 270 запусков двигателей на стенде[20 - После того как на ракеты Mirak установили новый двигатель Ei («Яйцо»), они получили новое название Repulsor.]. Последним крупным предприятием немецкого Общества межпланетных сообщений стала пилотируемая ракета Pilotrakete[21 - Изготовление прототипов и самой Pilotrakete оплачивали городские власти Магдебурга, поэтому в литературе эту ракету часто называют Магдебургской ракетой.]. По проекту она должна была иметь огромные для того времени размеры (высота – почти 8 м) и мощный ракетный двигатель с «носовой» тягой[22 - Носовая тяга подразумевает установку реактивных сопел в носовой части ракеты. Сейчас такая схема расположения сопел представляется экзотической, но в первой трети ХХ века с ее помощью пытались решить проблему стабилизации ракеты в полете. Носовой тяге отдали должное и К. Э. Циолковский, и Г. Оберт, и многие другие основоположники космонавтики.], работающий на смеси бензин-кислород. В одном отсеке планировалось разместить кабину с пассажиром и топливные баки, в другом – двигатели и парашют. Создатели ракеты надеялись, что она достигнет высоты 9 км. В реализации проекта проявила заинтересованность администрация Магдебурга, выделив на него 40 тыс. рейхсмарок. Нашелся даже смельчак, готовый отправиться в ракетный полет, – некто Курт Гейниш. На начальном этапе члены Общества собирались построить прототип – ракету той же схемы, что и Pilotrakete, но меньших размеров. Работа началась в рождественские праздники 1932 года, а первый старт был запланирован на июнь 1933 года. Поблизости от Магдебурга члены Общества соорудили большую пусковую направляющую. 29 июня, после двух неудачных попыток запуска, ракета все же стартовала. При этом один из роликов сошел с направляющего рельса, из-за чего ракета взлетела почти горизонтально и упала плашмя на землю в 300 м. Максимальная высота полета составила около 30 м. На этом проект был закрыт. В роковом 1933 году к власти в Германии пришли нацисты. Уже зимой количество членов Общества межпланетных сообщений сократилось до трехсот человек, а многие из них лишились средств к существованию. Общество пыталось найти поддержку у военных, однако показательный запуск ракеты Mirak на полигоне Куммерсдорф южнее Берлина не произвел должного впечатления на боевых офицеров – ракета упала всего лишь на расстоянии 2 км от старта. 1.3 Группа изучения реактивного движения В Советской России также предпринимались попытки создать организацию ракетчиков, занимающихся проектированием систем для космических полетов. Наибольшую активность на этом поприще проявил выпускник Рижского политехнического института Фридрих Артурович Цандер[23 - Цандер, Фридрих Артурович (1887–1933) – советский инженер, теоретик космонавтики. В 1914 году окончил Рижский политехнический институт, работал на завод «Проводник», выпускавший различные резиновые изделия. В 1915 году в связи с приближением фронта к Риге завод со всем персоналом был эвакуирован в Москву. В 1919 году Ф. А. Цандер перешел на авиационный завод «Мотор». Проблемами реактивного движения он начал заниматься с 1908 года. Его внимание привлекали вопросы конструирования космических аппаратов, выбор движущей силы, замкнутой системы жизнеобеспечения. Активно популяризировал космонавтику, выступал с лекциями, писал статьи. В 1931 году основал Группу изучения реактивного движения – ГИРД.]. Позднее Цандер вспоминал, что на его жизненный выбор повлияли два текста: роман Жюля Верна «С Земли на Луну…» и статья Циолковского «Исследование мировых пространств реактивными приборами», фрагменты из которой зачитал его классу школьный учитель. Цандер верил, что Марс обитаем, и, добравшись до красной планеты, земляне встретят там высокоразвитую цивилизацию. На всю жизнь лозунгом Фридриха Артуровича стал призыв: «Вперед! На Марс!» Внимание Цандера привлекали вопросы конструирования космических аппаратов, выбора движущей силы, создания замкнутой системы жизнеобеспечения. В 1909 году Цандер впервые высказал мысль о том, что в качестве горючего можно использовать элементы конструкции межпланетного корабля[24 - Фактически Ф. А. Цандер сформулировал концепцию электротермического ракетного двигателя. Распыленный и раскаленный металл дает гораздо большую тягу, чем любое жидкое топливо. Однако его использование требует наличия на борту космического аппарата мощной энергетической установки и особо прочных материалов. Из-за этого электроракетные двигатели пока не получили широкого распространения в космической технике.]. В 1915 году в связи с приближением фронта к Риге Цандер был эвакуирован вместе с персоналом завода «Проводник» в Москву. С 1917 года он приступил к систематическим исследованиям проблем теоретической космонавтики. Результаты своих предварительных изысканий Фридрих Цандер представил 29 декабря 1921 года на первой Губернской конференции изобретателей, проходившей в Москве. Он специализировался на авиационных двигателях, однако на этот раз решил удивить коллег фантастическим проектом корабля-аэроплана для полета на Марс. Символическое совпадение – в то же самое время находящийся в эмиграции знаменитый писатель Алексей Николаевич Толстой начал работу над романом «Аэлита», в котором собирался описать полет изобретательного инженера Лося и красногвардейца Гусева в космическом корабле на Марс. Проект, озвученный на Губернской конференции изобретателей, был весьма оригинален. В качестве межпланетного корабля действительно служил большой герметичный аэроплан. В пределах атмосферы он должен был летать с помощью поршневых двигателей высокого давления, а на границе космоса большие крылья втягивались внутрь фюзеляжа и расплавлялись, служа дополнительным топливом для ракетного двигателя. Малые крылья были необходимы для планирования в атмосфере Марса и при возвращении на Землю. Доклад был принят благосклонно, и тогда Цандер попросил у руководства Госавиазавода № 4, на котором в то время трудился, годичный отпуск для развития проекта. На общем собрании работников просьбу энтузиаста поддержали – идея полета на Марс так завораживала, что было решено отчислять Цандеру процент с зарплаты для того, чтобы он мог спокойно довести свой космический аэроплан до реальной модели. Будучи по натуре практиком, Цандер сразу занялся поисками технических решений, которые могли бы ускорить постройку такого аэроплана. В 1924 году он приступил к разработке методик расчета жидкостных ракетных двигателей. Рижский инженер столкнулся с той же проблемой «замкнутого круга», что и немец Герман Оберт: для создания жидкостного ракетного двигателя нужна теория двигателей, но теория не может возникнуть без двигателя. Фридрих Цандер решил пойти эмпирическим путем, то есть методом проб и ошибок. Прототип он нашел на заводе имени Матвеева в Ленинграде – им стала обычная паяльная лампа. Переделав ее, инженер создал двигатель «ОР-1» («Первый опытный реактивный»), работающий на бензине и воздухе. В период с 1930 по 1932 год Цандер провел большое количество испытаний. Полученные результаты дали возможность перейти к созданию более совершенных двигателей, в которых окислителем служил жидкий кислород. Именно в этот период Цандер познакомился с амбициозным авиаконструктором Сергеем Павловичем Королёвым. Сергей Королёв, выпускник Московского высшего технического училища и Московской школы летчиков-планеристов, в начале карьеры занимался конструированием планеров. Первую славу ему принес планер «Красная Звезда» – 28 октября 1930 года пилот Василий Степанчонок сделал на нем три «мертвые петли» подряд. О выдающемся полете написали профильные издания: «Самолет», «Красная Звезда», «Физкультура и спорт». Когда Королёв начал обучение на инженера-конструктора, он не задумывался о космических полетах и ничего не слышал ни о Циолковском, ни о Цандере. Однако стремление летать выше и дальше, присущее всем авиаторам, побуждало его искать новые пути. В майском номере журнала «Самолет» за 1931 год была опубликована подборка материалов о первых удачных опытах с ракетными двигателями – этих сведений оказалось достаточно, чтобы молодой инженер обратил внимание на новые веяния. Заинтересовавшись темой, Королёв начал перебирать конструктивные схемы планеров с целью найти ту, которая идеально подошла бы для размещения ракетного двигателя, и остановился на «бесхвостой схеме». Оказалось, что такой планер – «БИЧ-8» («Треугольник») – уже существует[25 - Планер «БИЧ-8» сконструировал Борис Иванович Черановский, активно экспериментировавший с нестандартными схемами самолетов типа «бесхвостка» и «летающее крыло».]. Королёв сразу присоединился к его испытаниям, которые проходили на аэродроме ОСОАВИАХИМА[26 - ОСОАВИАХИМ – Общество содействия обороне, авиационному и химическому строительству – общественно-политическая оборонная организация, предшественник ДОСААФ. Общество возникло еще во время Гражданской войны, но под этим названием было официально зарегистрировано 23 января 1927 года. В январе 1948 года было реорганизовано и разделено на три обособленные организации.]. Там молодого авиаконструктора и нашел Фридрих Цандер. Судьбоносная встреча состоялась 5 октября 1931 года, и уже через два дня Королёв присутствовал при тридцать втором по счету стендовом запуске двигателя «ОР-1». Видимо, испытания произвели впечатление, и авиаконструктор загорелся идеей создания ракетоплана – самолета с ракетным двигателем. Незадолго до этого Цандер начал формировать Группу по изучению реактивного движения (ГИРД)[27 - Изначально ГИРД назывался Группой по изучению реактивных двигателей и реактивного летания.]. Королёв поддержал начинание – и до ГИРД в Советской России появлялись группы ракетчиков-энтузиастов, однако все они быстро прекращали существование, не имея конкретных задач и, соответственно, финансирования. У ГИРД такая задача была четко сформулирована: проектирование и создание ракетоплана «РП-1» с жидкостным двигателем «ОР-2»[28 - В отличие от «ОР-1» двигатель «ОР-2» проектировался с нуля. В нем Ф. А. Цандер применил вытеснительную подачу компонентов топлива сжатым азотом. Зажигание осуществлялось электросвечой. Окислитель (жидкий кислород) использовался для регенеративного охлаждения камеры сгорания.]. Почему именно ракетоплан, а не большая баллистическая ракета? Объяснение простое – создание больших ракет в ту пору было делом совершенно новым, и любой, кто начинал заниматься серьезным проектированием в этой области, наталкивался на ряд проблем. Одна из серьезнейших – как обеспечить стабильность полета ракеты и ее управляемость на всех этапах? Если в момент старта траекторию движения задавал пусковой станок с направляющими, а в дальнейшем ее поддерживали хвостовые стабилизаторы, то как быть с маневрированием в атмосфере и за ее пределами? Как обеспечить автоматическое регулирование тяги двигателя на различных режимах полета? Ракетоплан, казалось, решал большую часть этих проблем – управляемость обеспечивали крылья и их механизация; тягу двигателя мог регулировать сидящий в герметичной кабине пилот. Кроме того, в авиации уже был накоплен значительный опыт по созданию аппаратов тяжелее воздуха, и этим опытом не стоило пренебрегать. Зимой 1932 года Сергей Королёв формально не являлся членом ГИРД, участвуя в деятельности группы на общественных началах. Однако положение коренным образом изменилось в марте, после совещания, созванного начальником вооружений Рабоче-крестьянской Красной армии Михаилом Николаевичем Тухачевским[29 - Тухачевский, Михаил Николаевич (1893–1937) – советский военный деятель, маршал Советского Союза (1935). Продвинулся по служебной лестнице во время Гражданской войны, участвовал в подавлении антисоветских восстаний. На всех должностях М. Н. Тухачевский считал своей главной задачей подготовку Рабоче-крестьянской Красной армии к будущей войне, допуская милитаризацию экономики СССР. В январе 1930 году представил советскому руководству доклад о реорганизации вооруженных сил, содержавший предложения об увеличении числа дивизий до 250, о развитии артиллерии, авиации и танковых войск. С 1932 года покровительствовал советским ракетчикам; в 1933 году добился создания Реактивного научно-исследовательского института (РНИИ), занимавшегося разработкой ракетного оружия в СССР. М. Н. Тухачевский был репрессирован в 1937 году по так называемому «делу военных», реабилитирован в 1957 году.]. На этом совещании обсуждались перспективы применения ракет в военном деле. Выступил с докладом Королёв, который открыто взял на себя ответственность за организацию всех работ группы ракетчиков-энтузиастов. В апреле 1932 года ОСОАВИАХИМ выделил средства для формирования штата ГИРД. Тогда же для размещения группы было найдено подвальное помещение в доме № 19 на Садовой-Спасской улице. В июле ГИРД была преобразована из сугубо общественной группы в научно-исследовательскую и опытно-конструкторскую организацию по разработке ракет и двигателей, а с августа стала финансироваться Управлением военных изобретений. Сергея Королёва назначили начальником ГИРД. Структурно Группа была разделена на четыре тематические бригады. Первая бригада, которую возглавил Фридрих Артурович Цандер, экспериментировала с двигателем «ОР-1», конструировала двигатель «ОР-2» и исследовала проблематику сжигания металлических добавок в топливе. Рабочий план второй бригады, возглавляемой Михаилом Клавдиевичем Тихонравовым[30 - Тихонравов, Михаил Клавдиевич (1900–1974) – советский конструктор в области ракетостроения и космонавтики. В 1925 году окончил Военно-воздушную академию имени Н. Е. Жуковского, работал на ряде авиационных предприятий, конструировал планеры. В 1932 году возглавил бригаду в ГИРД. Руководил созданием первой советской ракеты с двигателем на гибридном топливе, занимался исследованием жидкостных ракетных двигателей, разработкой ракет для изучения верхних слоев атмосферы, вопросами повышения кучности стрельбы неуправляемыми реактивными снарядами.], включал несколько важных позиций, связанных с перспективами развития ракетной техники. Тема, шедшая под обозначением 03, заключалась в разработке кислородного насоса и считалась поистине революционной. Дело в том, что существовавшие на тот момент вытеснительные системы подачи компонентов ракетного топлива отличались громоздкостью, а насос исправил бы положение. Тема 05 была посвящена обеспечению устойчивости полета реактивных аппаратов – для исследований в этой области разрабатывалась экспериментальная ракета с мощными стабилизаторами, переходящими в крылья. Третья бригада под руководством Юрия Александровича Победоносцева[31 - Победоносцев, Юрий Александрович (1907–1973) – советский ученый, конструктор ракетной техники. В 1926 году поступил в Московское высшее техническое училище, в 1930 году закончил Московский авиационный институт. С 1925 года работал в Центральном аэрогидродинамической институте (ЦАГИ), с 1932 года – в ГИРД, с 1933 года – в РНИИ. Участвовал в создании реактивных минометов «БМ-8» и «БМ-13» («Катюша»), внес большой вклад в теорию горения порохов, установив критерий устойчивости горения, известный как «критерий Победоносцева». Автор трудов по внутренней баллистике ракетных двигателей.] занималась уже сущей экзотикой – опытной проверкой теоретических основ воздушно-реактивного двигателя[32 - Воздушно-реактивный двигатель (ВРД) – ракетный двигатель, использующий в качестве окислителя внешний воздух. Различные летательные аппараты с ВРД разрабатывались с 1930-х годов. Для начала процесса горения в таком двигателе аппарат нужно сначала разогнать, поэтому его используют только в качестве маршевого. В настоящее время нашел применение в гиперзвуковых высотных аппаратах.]. Для этой цели была построена специальная установка «ИУ-1», на которой исследовались способы зажигания и условия устойчивости горения в таких двигателях. Четвертая бригада Сергея Павловича Королёва была создана для практического осуществления полета человека на ракетоплане. На начальном этапе работа четвертой бригады сводилась к конструктивной доработке планера «БИЧ-11»[33 - Планер «БИЧ-11» разрабатывался авиаконструктором Б. И. Черановским в рамках программы ГИРД по созданию ракетоплана «РП-1». Двигатель «ОР-2» конструкции Ф. А. Цандера предполагалось установить за кабиной пилота, а баки для горючего и окислителя – встроить в обтекатели на крыле по бокам гондолы фюзеляжа.] с целью установки на нем двигателя «ОР-2». Покровительство военных дорого стоило – теперь нельзя было ограничиться мечтами о грядущих полетах на Марс, от «гирдовцев» ждали нового оружия. Причем требовалось как можно быстрее представить конкретные результаты. И вот тут начались сложности. Отправившись в санаторий на отдых, Фридрих Цандер подхватил по дороге сыпной тиф и 28 марта 1933 года ушел из жизни. Не получалось «довести до кондиции» и его новый двигатель «ОР-2». Пока «гирдовцы» корпели над двигателем, было решено начать испытания нового планера «БИЧ-11» с обычным мотором[34 - Сначала «БИЧ-11» летал как планер на IX планерных состязаниях 1933 года. Для дальнейших испытаний его оснастили поршневым мотором АВС Scorpion. Облет планера «БИЧ-11» проводился вначале на аэродроме Московской школы летчиков у станции Планерная Октябрьской железной дороги, затем – у станции Трикотажная.]. Сергей Королёв лично пилотировал планер. Испытания 26 июля 1933 года едва не закончились катастрофой – машина стартовала лишь с третьей попытки и на большой скорости ударилась о землю. К счастью, Королёв уцелел. В это время вторая бригада ГИРД работала над ракетой, проходившей в документах под индексом 07, с двигателем на бензине и жидком кислороде. Двигатель на испытаниях постоянно прогорал, поэтому в бригаде производились опыты по поиску других горючих материалов. Однажды камера сгорания взорвалась. По всему коридору гирдовского подвала прошла взрывная волна. Захлопали двери, деревянная перегородка инструментальной, примыкавшей к испытательному боксу, покосилась. А сами испытатели, работавшие за кирпичной стеной полуметровой толщины, едва устояли на ногах. Составили акт, в котором указали, что подобных опытов в подвале проводить больше не следует, и решили расходиться. Но выйти из подвала оказалось непросто – у дверей собрались возмущенные и вооруженные чем попало жильцы. «Гирдовцам» пришлось звонить в милицию и бурно объясняться. Заставить работать двигатель для «07» никак не получалось. Помог случай. Летом 1932 года старший инженер второй бригады Николай Иванович Ефремов по заданию Королёва ездил в Баку с лекциями по ракетной технике. Там он познакомился с сотрудником Азербайджанского нефтяного института Гурвичем, который рассказал о «сгущенном» бензине. Технология производства этого продукта очень проста: бензин смешивается с канифолью, и получается масса типа солидола. Бакинский «сгущенный» бензин натолкнул Тихонравова на идею создания новой ракеты, получившей обозначение 09[35 - Другое название ракеты «ГИРД-09» – «Р-1», но его редко используют в исторической литературе, поскольку возникает путаница с послевоенной ракетой С. П. Королёва «Р-1», созданной на основе «А-4^-2».]. Конструкция ракеты упрощалась тем, что не требовалось никаких насосов для подачи компонентов топлива в камеру сгорания. Жидкий кислород закипал в баке и вытеснялся в камеру сгорания давлением собственных паров. «Сгущенный» бензин помещался в самой камере и поджигался обычной авиасвечой. Корпус ракеты был разделен на четыре отсека: парашютный, полезного груза, топливный и хвостовой. Согласно расчетам, при стартовой массе 19 кг ракета должна была достигнуть высоты 5 км. Старт первой советской ракеты «ГИРД-09» состоялся 17 августа 1933 года на подмосковном полигоне Нахабино. Ракета взлетела, поднявшись на высоту около 400 м. Полет продолжался 18 секунд и был признан успешным. Теперь у Королёва имелось что предъявить военному начальству. При разработке серийного варианта ракеты, получившего индекс 13, в конструкцию внесли ряд усовершенствований: увеличили тягу двигателя и изменили систему заправки кислородом. Всего было изготовлено шесть ракет, три из них поднялись до 1,5 км. Несомненно, что при дальнейшей доводке этой машины ее создатели добились бы расчетной высоты полета, но их уже поглотила разработка новых и более сложных проектов. С момента прихода в ракетостроение Сергей Королёв «продавливал» идею создания большого Реактивного института, рассчитывая получить должность его главы. В активе молодого конструктора был определенный опыт работ в новой области техники, его ценили как руководителя, ему доверяли, выделяя крупные ассигнования на исследования. Однако когда приказом по Реввоенсовету № 0113 от 21 сентября 1933 года, а затем Постановлением № 104 Совета Труда и Обороны от 31 октября 1933 года был организован Реактивный научно-исследовательский институт (РНИИ), его начальником стал кадровый офицер Иван Терентьевич Клейменов[36 - Клеймёнов, Иван Терентьевич (1898–1938) – советский военный инженер, один из организаторов и руководителей разработок ракетной техники. В 1928 году окончил Военно-воздушную академию имени Н. Е. Жуковского. В 1932–1933 годах возглавлял Газодинамическую лабораторию в Ленинграде (ГДЛ), в 1933–1937 годах – начальник РНИИ. В 1937 году был репрессирован, в 1955 году реабилитирован. Лишь в 1991 году Клейменов был признан одним из конструкторов реактивных минометов «БМ-8» и «БМ-13» («Катюша»), посмертно удостоен звания Героя Социалистического Труда.]. Королёву пришлось довольствоваться должностью заместителя. Позднее это спасло Сергею Павловичу жизнь. 1.4 Немецкие «Фау» После поражения Германии в Первой мировой войне на численность и вооруженность немецкой армии были наложены серьезные ограничения. Пострадала и артиллерия – Версальский договор разрешал Германии иметь всего две сотни полевых орудий и меньше сотни гаубиц. Победители с мелочной мстительностью даже рассчитали и записали в договор положенное к перечисленным орудиям количество снарядов. Однако о ракетах там ничего не было сказано. Этим и воспользовались генералы рейхсвера, в тайне от мира осуществлявшие перевооружение своей армии[37 - В Германской республике, образованной после поражения в Первой мировой войне, существовал так называемый «черный рейхсвер» – теневая армия, состоящая из внешне благопристойных гражданских и спортивных объединений. Отряды «черного рейхсвера» объединили около четырех миллионов здоровых и способных носить оружие мужчин, имевших опыт боевых действий. Был сохранен даже Генеральный штаб, действующий под видом Управления войск. Часть ветеранов служила в полицейских силах, и впоследствии многие из них возглавляли дивизии и корпуса. Каждый солдат и офицер «черного рейхсвера» готовился таким образом, чтобы в случае войны сразу принять командование: при этом майоры становились полковниками или генералами, а лучшие унтер-офицеры превращались в лейтенантов или капитанов.]. В 1930 году при военном министерстве был создан отдел баллистики во главе с полковником Карлом Беккером[38 - Беккер, Карл Хенрих Эмиль (1879–1940) – немецкий военный инженер, первый руководитель ракетной программы Третьего рейха. В 1911 году закончил Берлинскую военно-инженерную академию, в 1908–1911 годах работал техническим ассистентом в лаборатории баллистики. В период Первой мировой войны командовал артиллерийской батареей. После войны изучал химию и металлургию. В 1922 году получил докторскую степень. В 1930 году возглавил Отдел баллистики и боеприпасов при Управления вооружениями сухопутных сил. В 1937 году в звании генерала стал первым президентом Научно-исследовательского совета рейха. Покончил с собой после жесткой критики со стороны Адольфа Гитлера.]. Ракеты с жидкостными двигателями теоретически давали возможность стрелять дальше, чем артиллерия, а в отличие от авиации были практически неуязвимы в полете. Однако задача создания боевых серийных ракет, поставленная перед отделом Беккера, была в то время почти невыполнима. Ведь не имелось ничего, чем можно было бы руководствоваться при их конструировании военным инженерам. Ни один технический институт в Германии не вел работу в области ракет. Не занималась этим и промышленность. Не удалось даже найти хоть какого-нибудь изобретателя, способного предложить готовый проект. В 1930 году в отделе появился новый человек – капитан Вальтер Дорнбергер[39 - Дорнбергер, Вальтер Роберт (1895–1980) – немецкий инженер, один из основателей тяжелого ракетного машиностроения, генерал-лейтенант. Сразу после окончания школы был призван в армию. В Первую мировую войну служил в тяжелой артиллерии, в 1918 году попал в плен. В 1930 году окончил Шлоттенбургскую высшую техническую школу в Берлине и в том же году по протекции К. Беккера был направлен в Отдел баллистики и боеприпасов Управления вооружениями сухопутных сил рейхсвера. Имея звание капитана, стал фактическим научным куратором всех ракетных исследований. В 1937–1945 годах руководил ракетным центром Пенемюнде. В 1945 году сдался в плен американцам. После отбывания наказания за военные преступления работал научным консультантом фирмы Bell Aircraft Corporation.], профессиональный офицер, служивший в тяжелой артиллерии во время Первой мировой войны. И дело сдвинулось с мертвой точки. Дорнбергер следил за новыми веяниями и даже посещал запуски ракет Mirak, изготовленных членами Общества межпланетных сообщений. Однако работа гражданских энтузиастов не соответствовала требованиям армии, и Дорнбергер с согласия начальства взялся за организацию новой испытательной станции – на артиллерийском полигоне в Куммерсдорфе, в 27 км южнее Берлина. Ветеран сделал ставку на молодого талантливого инженера – барона Вернера фон Брауна[40 - Фон Браун, Вернер Магнус Максимилиан (1912–1977) – немецкий конструктор ракетно-космической техники, основоположник современного ракетостроения, создатель тяжелых баллистических ракет на жидком топливе. Принадлежал к аристократическому роду и слыл шалопаем, но прочел книгу Г. Оберта «Ракета для межпланетного пространства» и не на шутку увлекся идеей космических полетов. В 1930 году В. фон Браун поступил в Берлинский технический университет и присоединился к Обществу межпланетных сообщений. Также учился в Швейцарской высшей технической школе Цюриха. В 1932 году принят в ракетную научную группу В. Дорнбергера, с 1937 года – технический руководитель ракетного центра Пенемюнде. Чтобы получить эту должность, ему пришлось вступить в Национал-социалистическую партию и СС. В 1945 году В. фон Браун сдался наступающей американской армии вместе с документацией и сотрудниками центра Пенемюнде. В США возглавил Службу проектирования и разработки вооружения армии в Форт-Блиссе (штат Техас). С 1950 года работал в Редстоунском арсенале в Хантсвилле (штат Алабама). С 1956 года – руководитель американской программы разработки межконтинентальных баллистических ракет. С 1960 года – директор Центра космических полетов НАСА, руководитель разработок ракет-носителей серии Saturn.], с юности увлекавшегося ракетным делом. Первого ноября 1932 года фон Браун приступил к работе в Куммерсдорфе под началом у Дорнбергера, постепенно набирая помощников. Первоначально весь его «штат» состоял из механика Генриха Грюнова; вскоре к ним присоединился «двигателист» Вальтер Ридель[41 - Ридель, Вальтер (1902–1968) – немецкий инженер, конструктор жидкостных ракетных двигателей. Вошел в историю ракетостроения как «Папа» Ридель (его часто путают с другим ракетчиком из группы В. фон Брауна – Клаусом Риделем). Работал на химическом заводе Хейланда, где в 1930 году познакомился с энтузиастом космонавтики Максом Валье. Вместе с Валье сконструировал двигатель для ракетного автомобиля, а после смерти последнего в результате взрыва продолжал работать в этой области. В 1932 году присоединился к В. фон Брауну и сконструировал первые двигатели для его ракет, возглавлял Конструкторское бюро ракетного центра Пенемюнде. В 1945 году попал в плен к американцам и был отправлен в лагерь. После войны около года работал в Англии, потом переехал в США, где руководил исследовательской группой в North American Aviation Corporation.]. Став сотрудником полигона, Вернер фон Браун получил через Беккера небольшую финансовую поддержку армии для проведения экспериментов, связанных с диссертацией, а 27 июня 1934 года с успехом защитил ее, став самым молодым доктором технических наук в Германии. Диссертация называлась «Конструктивные, теоретические и экспериментальные соображения к проблеме жидкостных ракет». Поскольку тема была секретной, текст диссертации опубликовали лишь после 1945 года. Новому коллективу предстояло решить массу практических задач. И первая из них – какое топливо для серийной ракеты предпочесть? Пионеры «космического» ракетостроения уже накопили определенный опыт работы с сочетаниями спирт-кислород, бензин-кислород и керосин-кислород. Нефтепродукты калорийнее спирта, однако высокая калорийность подразумевает и более высокую температуру факела – без охлаждения камера сгорания быстро теряла прочность. Соответственно, охлаждение камеры сгорания и сопла становилось целой проблемой. Кроме того, за счет спирта можно уменьшить вес ракеты – спирт требует при горении меньшее количество окислителя: чтобы полностью сжечь 1 кг бензина, необходимо иметь 3,5 кг кислорода, а чтобы сжечь 1 кг спирта, нужно всего лишь около 2 кг кислорода. Вальтер Ридель отыскал еще один довод в пользу спирта. Ракетный двигатель в процессе работы можно охлаждать путем впрыскивания внутрь камеры сгорания некоторого количества воды. И спирт в отличие от нефтепродуктов можно прямо смешать с охлаждающей водой, отказавшись от дополнительных форсунок. Если бы перед Риделем стояла задача сделать двигатель для космической ракеты, то, возможно, он выбрал бы в качестве горючего керосин, надеясь решить проблемы охлаждения камеры сгорания в дальнейшем, однако в той ситуации предпочтение было отдано этиловому спирту. Деятельность станции «Куммерсдорф» началась с постройки испытательного стенда. В декабре 1932 года на нем был установлен первый двигатель, работающий на смеси спирт-кислород. Однако попытка запустить его окончилась неудачей – двигатель взорвался. Последовал полный разочарований год: ракетные двигатели прогорали в критических точках, пламя факела шло в обратном направлении и воспламеняло топливные форсунки. Но между неудачами случались и успешные запуски, которые показывали, что двигатель можно заставить работать. В 1933 году наступило время проектирования полноразмерной ракеты. Условно она была названа «Aggregat-1» или «А-1». Сразу встал вопрос об управляемости ракеты. Как опытный артиллерист Вальтер Дорнбергер полагал, что ракета должна стабилизироваться вращением, подобно гироскопу. Поэтому он предложил создать ракету с вращающейся боевой частью и невращающимися баками. Пока шло проектирование «А-1», двигатель удалось доработать, значительно подняв тягу. Конструкторы решили, что можно сразу делать большую ракету, отказавшись от промежуточного варианта, и запустили в работу следующий проект – «А-2». При этом поменялись не только размеры ракеты, но и ее компоновка – стабилизирующая вращающаяся часть помещалась теперь не в голове ракеты, а в пространстве между баками горючего и окислителя. К декабрю 1934 года были изготовлены две ракеты типа «А-2», названные в шутку «Макс» и «Мориц», по именам парочки комиков, весьма популярных в Германии. Обе они были перевезены на остров Боркум в Северном море и запущены незадолго до рождественских праздников. Ракеты поднялись на высоту 2000 м, причем тяга обеспечивалась не новым, а старым двигателем. Удачные запуски вдохновили конструкторов, однако выявили очередную группу проблем. Стало ясно, что с помощью гироскопов необходимо не только корректировать отклонение ракеты от оси полета, но и пресекать малейшие колебания по всем трем осям: по курсу, крену и тангажу[42 - Курс, крен, тангаж – угловые координаты движущегося тела, характеризующие его отклонение от трех осей координат. Проще говоря, курс – носом вправо или влево, крен – на левый или правый борт, тангаж – носом вверх или вниз.]. Рассмотрели несколько вариантов стабилизации ракеты. К примеру, предлагалось установить крылья – то есть фактически шла речь о создании крылатой ракеты или ракетоплана. Однако исследования показывали, что на начальном участке траектории, когда скорость еще низка, крылья неэффективны, а на больших высотах их использование вообще теряет смысл. Решение проблемы нашли в применении газовых рулей. К тому времени было уже известно, что если воздушный поток крайне изменчив, то струя истекающих из ракеты газов постоянна по своим характеристикам. Это навело на мысль, что поверхности управления можно установить прямо в «выхлопе». Первым такой вариант описал еще Константин Циолковский, за ним идею высказал Герман Оберт. Последний особенно подчеркивал, что газовые рули должны управлять ракетой путем сжатия истекающей струи своими плоскими поверхностями. В итоге конструкторской работы появилась ракета «А-3». Ее носовая часть была заполнена батареями. Под ними размещался приборный отсек с барографом и термографом; там же установили миниатюрную кинокамеру, снимавшую в полете их показания. Имелось аварийное устройство отсечки топлива, действовавшее с помощью сигнала по радио. Ниже отсека с приборами был расположен бак с кислородом, затем шел отсек с парашютом, потом бак с этиловым спиртом и, наконец, ракетный двигатель. В составе оборудования «А-3» имелась гиростабили-зированная платформа с акселерометрами для корректирования ракеты в полете по тангажу и по курсу, но главное – электрические сервомоторы и молибденовые газовые рули. Территория испытательной станции в Куммерсдорфе оказалась мала для обеспечения масштабных работ. Необходимо было сменить место, и после недолгих поисков Вернер фон Браун нашел его. Новый ракетный центр решили возвести на балтийском острове Узедом, расположенном в устье реки Пене, близ рыбацкого поселка Пенемюнде. На разработку ракетного оружия из бюджета Германии было выделено 20 млн рейхсмарок. Хотя новая станция и получила название Армейская экспериментальная станция Пенемюнде, ее равноправными хозяевами стали армия и ВВС. При этом армейцам отводилась лесистая часть острова восточнее озера Кельпин – ее назвали «Пенемюнде-Восток». Представители ВВС облюбовали себе пологий участок местности к северу от озера, где можно было соорудить аэродром; эта зона получила название «Пенемюнде-Запад». Строительство на острове Узедом велось с размахом: посреди дикой местности вырастали здания цехов, станции серийных испытаний, экспериментальной лаборатории, завода по производству жидкого кислорода, электростанции. На северной стороне острова укладывались плиты аэродромного покрытия, сооружались стартовые площадки, стенды. Южнее располагался городок научно-технического персонала. Несколько в отдалении собирались бараки для рабочих. Через остров проложили железные и шоссейные дороги. Запуски четырех ракет «А-3» были проведены в декабре 1937 года. Хотя двигательная установка отработала как надо, система наведения и стабилизации не оправдала возлагавшихся на нее надежд. Газовые рули «А-3» оказались слишком малы, а реакция сервосистемы на сигнал управления запаздывала. Требовалось вновь пересмотреть всю концепцию. В компоновке нового варианта большой ракеты, получившей обозначение «А-5», использовался двигатель ракеты «А-3», но снабженный большими газовыми рулями из графита. Кроме того, ракете была придана более совершенная обтекаемая форма с хвостовым оперением в виде четырех стабилизаторов – форму отработали в аэродинамической трубе, а также сбрасывая модели с самолетов. Но что важнее всего – на «А-5» установили самую современную систему управления. Запуски «А-5» начались осенью 1938 года, но только через год, когда уже шла война с Польшей, эта ракета стартовала с полным оборудованием и безупречно поднялась на высоту 12 км. Всего состоялось 25 пусков ракет «А-5»: сначала они стартовали вертикально, затем – по наклонной траектории. Конструкторы могли вздохнуть с облегчением: полеты «А-5» подтвердили правильность выбранных решений. Уже в то время, когда ракета «А-3» находилась на стадии проектирования (лето 1936 года), Вернер фон Браун и Вальтер Ридель задумали построить ракету, которая в дальнейшем стала известна как «А-4». Она должна была доставить боевую часть весом в 1000 кг на расстояние в 260 км. По этим данным можно спроектировать большое количество совершенно разных ракет, но выбор габаритов определился элементарным соображением: требовалось доставить новое оружие вплотную к линии фронта, а следовательно, максимально допустимые габариты диктовались шириной туннелей и кривизной закруглений железнодорожной колеи. Для такой ракеты требовался новый мощный двигатель, и за его разработку взялся талантливый конструктор Вальтер Тиль. Он не только сумел улучшить конструкцию, предложенную Риделем, но и добился полного и равномерного сгорания топлива, использовав специальные центробежные форсунки. В двигателе «А-4» были применены и другие технологические новшества: пленочное охлаждение, сварные стенки камеры сгорания. Ракета «А-4» имела общую длину 14,3 м и стартовый вес 12,7 т и состояла из четырех отсеков. Носовая часть представляла собой боевую головку массой 1 т. Ниже находился приборный отсек, в котором наряду с аппаратурой помещались стальные цилиндры со сжатым азотом, используемым для повышения давления (вытеснения) в баке с горючим. Ниже приборного располагался топливный отсек – самая объемистая и тяжелая часть ракеты. Бак с этиловым спиртом располагался в верхней части этого отсека. Из него через центр бака с кислородом проходил трубопровод, подававший горючее в камеру сгорания. Самой важной новинкой в «А-4» по сравнению с другими ракетами было наличие турбонасосного агрегата для подачи компонентов топлива к форсункам двигателя. В 1940 году ракетный центр Пенемюнде вдруг оказался на «голодном пайке»: начавшаяся война жадно поглощала ресурсы, и финансирование резко снизилось. Но все же к лету 1942 года ракетчикам удалось выпустить опытные образцы «А-4». Первый экспериментальный запуск новой большой ракеты состоялся 13 июня 1942 года в присутствии министра вооружений Альберта Шпеера и фельдмаршала Эрхарда Мильха. Зрелище было столь эффектным, что и через двадцать пять лет Шпеер вспоминал о нем с благоговением: «В пусковую секунду, сначала как бы нехотя, а затем с нарастающим рокотом рвущего оковы гиганта, ракета медленно отделилась от основания, на какую-то долю секунды, казалось, замерла на огненном столбе, чтобы затем с протяжным воем скрыться в низких облаках. Лицо Вернера фон Брауна сияло от счастья. Я же был просто потрясен этим техническим чудом – опровержением на моих глазах привычного закона тяготения: без всякой механической тяги вертикально в небо вознеслись тринадцать тонн груза!..» Однако столь эффектный взлет завершился провалом – двигатель ракеты отработал 36 секунд, после чего она рухнула на землю в 1,3 км от старта. Второй запуск состоялся только через два месяца, ракета поднялась на 11 км, но в полете разрушилась головная часть. Успех сопутствовал лишь третьей ракете «А-4» – ясным днем 3 октября 1942 года она преодолела расстояние в 190 км. Радости конструкторов не было предела, однако следующие запуски вновь принесли разочарование. Большая ракета еще требовала доводки. Семнадцатого февраля 1943 года работники Пенемюнде запустили «А-4» вертикально вверх, чтобы узнать ее «потолок». Ракета достигла высоты 192 км, преодолев таким образом условную границу космоса. На корпусе этой ракеты техники нарисовали голую красотку, сидящую на лунном серпе, – в память о фантастическом фильме Фрица Ланга «Женщина на Луне». Немецкие ракетчики оставались энтузиастами освоения Вселенной, они часто обсуждали возможность создания искусственных спутников Земли и пилотируемых космических кораблей. Вернер фон Браун налаживал контакты с метеорологами и астрономами, чтобы начать научные исследования с помощью ракет. Однако эта деятельность была запрещена на высшем уровне – ракетчиков чуть не обвинили в государственной измене и саботаже. После «профилактического» ареста Вернера фон Брауна сотрудники Пенемюнде занимались исключительно военными аспектами применения ракет… Еще весной 1942 года английская агентура в Германии получила информацию, что Пенемюнде является важнейшим военным объектом. Информация требовала проверки, и командование стало посылать разведывательные самолеты в этот район Балтики, однако, чтобы не выдать немцам своих намерений, англичане фотографировали все побережье – от Киля до Ростока. Через некоторое время летчики сообщили, что немцы вполне примирились с частыми полетами над этим районом, а однажды один из разведчиков вернулся с фотоснимком, на котором было изображено нечто похожее на небольшой самолет на наклонной пусковой установке[43 - На этом снимке был запечатлен самолет-снаряд «Fi-103» с пульсирующим воздушно-реактивным двигателем, который разрабатывался сотрудниками «Пенемюнде-Запад» по заказу немецких ВВС и вошел в историю как «V-1».]. Вечером 17 августа 1943 года немцы узнали о концентрации крупных сил английской бомбардировочной авиации над Балтийским морем, но сделать уже ничего не успели. Ночью Пенемюнде подверглось налету более 300 тяжелых бомбардировщиков, сбросивших огромное количество фугасных и зажигательных бомб. Целями бомбардировки были испытательные стенды, производственные цеха и поселок на острове Узедом. Человеческие потери составили 735 человек. Среди них был и главный «двигателист» Вальтер Тиль. Однако разрушение ракетного центра уже не могло остановить Адольфа Гитлера, который увидел в «А-4» оружие, способное поставить Англию на колени и вывести ее из войны. Вернувшись однажды из ставки, рейхсминистр Геббельс опубликовал в «Фёлькишер Беобахтер» следующее зловещее заявление: «Фюрер и я, склонившись над крупномасштабной картой Лондона, отметили квадраты с наиболее стоящими целями. В Лондоне на узком пространстве живет вдвое больше людей, чем в Берлине. Я знаю, что это значит. В Лондоне вот уже три с половиной года не было воздушных тревог. Представьте, какое это будет ужасное пробуждение!..» «Война механизмов» (Robot Blitz) началась ранним утром 13 июня 1944 года. В первой волне атаки на Лондон использовались самолеты-снаряды «V-1», созданные по заказу ВВС[44 - В ходе первого этапа «Войны механизмов» по целям в Англии было выпущено 8070 (по другим источникам – 9017) самолетов-снарядов «Fi-103» («V-1»). Истребители английской ПВО уничтожили 1847 «V-1», расстреливая их бортовым оружием или сбивая спутным потоком. Зенитная артиллерия уничтожила 1878 самолетов-снарядов. Об аэростаты заграждения разбилось 232 снаряда. В целом было сбито почти 53 % всех самолетов-снарядов «V-1», выпущенных по Лондону, и только 32 % наблюдаемых самолетов-снарядов прорвалось к району целей. Все же нанесенный ущерб оказался довольно значительным: было уничтожено 24 491 жилое здание, погибло 5864 человека, 17 197 были тяжело ранены.]. Когда английские военные научились бороться с ними, в ход пошли ракеты «А-4», названные в целях пропаганды «V-2» (от нем. Vergeltung – возмездие). Ракетные атаки продолжались с 8 сентября 1944 года по 23 марта 1945 года. За этот период времени по целям в Англии и на континенте было запущено свыше 4000 «V-2». По официальным данным, на территорию Англии упало 1054 баллистические ракеты. Погибло 2754 человека, в основном гражданское население. Ракетчики Пенемюнде так и не сумели добиться точности в наведении ракет, а большое рассеивание (от 10 до 20 км!) свело наносимый ущерб к минимуму. Поставить Англию на колени массированным применением ракетного оружия не удалось. В конце января 1945 года в связи со стремительным наступлением советских войск руководство ракетного центра Пенемюнде получило приказ эвакуироваться. В первых числах февраля автопоезд, насчитывавший до 3000 автомашин и прицепов, под охраной эсэсовцев двинулся через Германию. Десятки ракетных специалистов, огромное количество технической документации, образцы ракетного оружия и ценное оборудование – всё, что представлялось возможным, было вывезено с «секретного» острова. Ракетчики эвакуировались в Баварию, в район стыка границ Австрии, Германии и Швейцарии, и провели там несколько тревожных недель. Наконец, когда стало ясно, что все окружающие районы заняты американскими войсками, Магнус фон Браун, младший брат Вернера, был послан отыскать кого-нибудь, кому персонал ракетного центра мог сдаться официально. Остров Узедом был занят 5 мая 1945 года войсками 2-го Белорусского фронта. На этом история ракетной программы нацистской Германии завершилась. Но ей еще предстояло сыграть немалую роль в становлении мировой космонавтики. 1.5 Трофейная техника К концу Великой Отечественной войны Советский Союз значительно отставал в области ракетостроения. Дело в том, что в 1937 году по советским ракетчикам был нанесен серьезный удар. В мае того мрачного года по обвинению в измене Родине арестовали и расстреляли маршала Тухачевского. Второго ноября 1937 года в связи с «делом Тухачевского» арестовали руководителей Реактивного научно-исследовательского института, они тоже были расстреляны[45 - По абсурдным обвинениям были арестованы следующие сотрудники РНИИ: директор И. Т. Клейменов (расстрелян), главный инженер Г. Э. Лангемак (расстрелян), главный конструктор двигателей В. П. Глушко (осужден на восемь лет), начальник отдела С. П. Королев (осужден на десять лет).]. Двадцать седьмого июня 1938 года арестовали и Сергея Королёва. Через три месяца после этого состоялось судебное заседание, на котором Королёва приговорили к десяти годам лишения свободы с поражением в правах на пять лет и конфискацией имущества. Новоиспеченного заключенного отправили в лагерный пункт Мальдяк на Колыме. Работы над ракетопланами и жидкостными ракетами были практически свернуты, институт реорганизован[46 - Справедливости ради надо отметить, что реорганизация РНИИ началась еще до арестов. В конце 1936 года Наркомат тяжелой промышленности (НКТП), в структуру которого входил Реактивный научно-исследовательский институт, был разделен на ряд наркоматов, в частности из него был выделен Наркомат оборонной промышленности (НКОП). И. Т. Клеймёнов добился передачи института из НКТП в НКОП, что сулило повышение финансирования. Тогда же институт был переименован из РНИИ в НИИ-3 и стал закрытой организацией. Однако смена руководства после устранения И. Т. Клеймёнова привела к изменению приоритетов – основным направлением деятельности НИИ-3 стало создание реактивных снарядов, а потому в 1940 году институт был переподчинен Наркомату боеприпасов.]. Основным направлением стало создание реактивных минометов «БМ-13» на автомобильном шасси, которые вошли в историю под ласковым именем «катюши». Однако сведения о применении «А-4/У-2» заставили руководство СССР задуматься. Невиданное оружие могло быть использовано против Советской армии. Об интересе англичан и американцев к ракетам свидетельствовали данные разведки. Американцы даже не скрывали, что ведут «охоту» на немецких военных специалистов[47 - Операция по поиску, вербовке и вывозу немецких военных специалистов за океан получила название Paperclip («Скрепка»). За несколько послевоенных лет в США были вывезены свыше 1500 человек.]. Глава государства Иосиф Виссарионович Сталин поставил задачу: изучить опыт создания «А-4» и попытаться воспроизвести его в отечественных условиях. Четырнадцатого октября 1945 года на берегу Северного моря, в местечке Куксхафен, расчет немецких ракетчиков подготовил к запуску ракету «А-4». Только теперь делали они это не по приказу своего командования, а под присмотром англичан. Ракета стартовала успешно, поразив условную цель в 233 км от старта. На том запуске, проведенном в ходе операции «Отдача»[48 - В рамках операции Backfire («Отдача») англичане осуществили четыре запуска ракет «А-4», 1, 2, 4 и 14 октября; только два из четырех были успешны.], присутствовали делегации советского и американского командования. Наблюдал за стартом ракеты и Сергей Павлович Королёв. Английские разведчики сразу обратили внимание на коренастого офицера в форме капитана артиллерии. Один из англичан, хорошо говоривший по-русски, напрямую спросил Королёва, чем тот занимается. Сергей Павлович ответил: «Вы же видите, я капитан артиллерии». На это англичанин заметил: «У вас слишком высокий лоб для капитана артиллерии. Кроме того, вы явно не были на фронте». И действительно – Сергей Павлович ни разу не побывал на фронте. Всю войну он провел в засекреченных «шарагах» – специальных конструкторских бюро, созданных НКВД. В начале 1940 года Королёва вернули по этапу в Москву, и до ноября 1942 года он работал под руководством знаменитого авиаконструктора Андрея Николаевича Туполева[49 - ЦКБ-29 («Туполевская шарашка», «шарага») – режимное конструкторское бюро, созданное НКВД СССР для работ над перспективной авиационной техникой. Сотрудники для бюро набирались из числа осужденных по «политическим» статьям инженеров и конструкторов. Сам глава бюро А. Н. Туполев был арестован по обвинению во вредительстве и шпионаже в октябре 1937 года. В ЦКБ-29 трудились многие прославленные впоследствии авиаконструкторы: Р. Л. Бартини, Б. С. Стечкин, В. М. Мясищев, В. М. Петляков и др.]. Однако Королёв не забыл своего увлечения ракетами. Когда ему удалось перевестись в Казань, где на авиамоторном заводе № 16 шли работы по созданию четырехкамерного реактивного двигателя на жидком топливе «РД-1», Королёв сразу же предложил поставить этот двигатель на самолет «Пе-2», получив на выходе летательный аппарат нового типа – реактивный перехватчик «РП»[50 - Реактивный перехватчик «РП» был создан С. П. Королёвым на основе самолета «Пе-2» путем установки на него жидкостного ракетного двигателя «РД-1» конструкции В. П. Глушко.]. Позднее эта работа принесла ему орден «Знак Почета». Именно в Казани Королёв, просуммировав результаты исследований Реактивного института и объединив их с опытом боевого применения «катюш», сконструировал две ракеты на твердом топливе: «Д-1» и «Д-2»[51 - При создании ракет дальнего действия «Д-1» и «Д-2» С. П. Королёв предполагал использовать богатый опыт эксплуатации реактивных минометов «БМ-13» («Катюша»). При этом «Д-1» должна была иметь дальность полета в пределах от 12 до 13 км, а снабженная крыльями «Д-2» – от 60 до 115 км в зависимости от примененного пороха. В записке к проекту С. П. Королёв не забыл указать, что замена пороха на жидкое топливо позволит увеличить дальность полета этих ракет до 150 км.]. Для реализации проектов Сергей Павлович предлагал создать Спецбюро. В записке от 30 июня 1945 года, составленной Королёвым, встречается один пункт, который совпал с планами правительства: «Ознакомить ведущих работников Спецбюро с трофейной ракетной техникой». Вскоре Королёв отправился в Германию и возглавил группу «Выстрел», занимавшуюся изучением вопросов предстартовой подготовки и запуска ракет «А-4». Чтобы как-то скоординировать деятельность многочисленных групп, работавших с трофейной ракетной техникой, в марте 1946 года было принято решение о создании единой научной организации – института «Нордхаузен», расположившегося в городе Бляйхероде. Выбор места был обусловлен тем, что поблизости находился огромный подземный завод, в цехах которого узники немецкого концентрационного лагеря «Дора» собирали «V-2»[52 - Подземный завод Миттельверк (нем.: Mittelwerk) был создан для серийного производства самолетов-снарядов «V-1» и баллистических ракет «V-2» в шахтах по добыче гипса в горе Конштайн, вблизи города Нордхаузен. Строительство завода велось руками военнопленных, политических заключенных и насильственно угнанных в Германию жителей различных стран. В дальнейшем, когда завод вошел в строй, на производстве ракет работали свыше 40 тысяч заключенных. Лагерь «Дора-Миттельбау», где размещались рабочие подземного завода – русские и поляки, чехи и французы, югославы, итальянцы, немцы – по жестокости обращения и невыносимым условиям труда стоял в одном ряду с Бухенвальдом и другими нацистскими «фабриками смерти».]. Королёв получил в этом институте должность главного инженера. Именно здесь он в компании сослуживцев начал первые эскизные проработки варианта ракеты «А-4» на дальность 600 км – будущей «Р-2». Тогда же у сотрудников института «Нордхаузен» возникла идея создания и постройки силами немецких вагоностроительных фирм специального железнодорожного состава – ракетного поезда. Этот поезд должен был обеспечить экспериментальный старт «А-4» в любой местности – чтобы не требовалось ничего, кроме железнодорожной колеи. Поезд состоял из 68 специальных вагонов, в числе которых были вагоны-лаборатории для автономных испытаний бортовых приборов, вагоны службы радиотелеметрических измерений «Мессина», фотолаборатории с устройствами обработки пленки, вагон испытаний двигательной автоматики и арматуры, вагоны-электростанции, компрессорные, мастерские со станочным оборудованием, рестораны, бани и душевые, салоны для совещаний, броневагон с электропусковым оборудованием. Предполагалось, что управление ракетой будет осуществляться прямо из броневагона. Сама ракета устанавливалась на стартовом столе, который вместе с подъемно-транспортным оборудованием входил в комплектацию специальных платформ. Как ни невероятно, но два таких спецпоезда были построены и полностью укомплектованы уже к декабрю 1946 года. В течение первых послевоенных лет наши ракетчики просто не мыслили себе жизни и работы без этих спецпоездов… В мае 1946 года министр вооружения Дмитрий Федорович Устинов[53 - Устинов, Дмитрий Фёдорович (1908–1984) – советский военачальник, государственный и партийный деятель. В 1922–1923 годах служил в Красной Армии, после чего окончил профтехшколу и Ленинградский военно-механический институт. С 1934 года – инженер в Артиллерийском морском НИИ, начальник бюро эксплуатации и опытных работ; с 1937 года – инженер-конструктор, заместитель главного конструктора и директор ленинградского завода «Большевик». Незадолго до начала Великой Отечественной войны был назначен народным комиссаром вооружения СССР. На этом посту он внес значительный вклад в достижение победы, обеспечив массовый выпуск оружия и успешное освоение производства новых видов вооружения. В 1946–1953 годах занимал пост министра вооружения, в 1953–1957 годах Д. Ф. Устинов – министр оборонной промышленности СССР, а в 1957–1963 годах – заместитель председателя Совета Министров СССР. Позднее был министром обороны СССР и членом Политбюро ЦК КПСС (1976).] пошел с докладом к Сталину и описал главе Советского Союза, какие перспективы сулят тяжелые баллистические ракеты. Доклад произвел впечатление, и по его итогам 13 мая 1946 года было принято Постановление Совета министров СССР № 1017-419сс «Вопросы реактивного вооружения». В соответствии с этим постановлением создали Специальный комитет по реактивной технике при Совете министров СССР. Возглавил его Георгий Максимилианович Маленков[54 - Маленков, Георгий Максимилианович (1901–1988) – советский государственный и партийный деятель. В 1919 году закончил классическую гимназию и был призван в Красную армию. В 1920–1930 годах – сотрудник Организационного отдела ЦК ВКП(б), с 1927 года – технический секретарь Политбюро ЦК, в 1934–1939 годах – заведующий отделом руководящих партийных органов ЦК ВКП(б), с 1939 года – начальник Управления кадров ЦК и секретарь ЦК. В годы Великой Отечественной войны Г. М. Маленков был членом Военных советов ряда фронтов, членом Государственного комитета обороны, комиссаром авиационной промышленности. Курировал ряд важнейших отраслей оборонной промышленности, в том числе создание водородной бомбы и первой атомной электростанции. Фактический руководитель СССР в 1953–1955 годах.], а посты его заместителей заняли министр вооружения Дмитрий Федорович Устинов и инженер «старой школы» Иван Герасимович Зубович[55 - Зубович, Иван Герасимович (1901–1956) – советский инженер, государственный деятель. В 1935 году окончил Ленинградский индустриальный институт. В 1935–1938 годах работал на ленинградских предприятиях: начальник цеха, начальник производства завода «Электроприбор», директор завода № 210. В 1938–1939 годах возглавил 5-е Главное управление Наркомата оборонной промышленности СССР, в 1939–1940 годы – 7-е Главное управление Наркомата авиационной промышленности СССР. В годы войны занимал руководящие должности в Наркомате электропромышленности СССР. В 1946–1947 годах – министр промышленности средств связи СССР, в 1949–1953 годах – заместитель министра вооружения СССР. На посту заместителя министра организовал перестройку значительной части радиотехнической промышленности на разработку и выпуск аппаратуры для ракетной техники, стал инициатором образования крупнейших научно-исследовательских организаций.]. В историческом постановлении говорилось: «Обязать Специальный комитет по реактивной технике представить на утверждение председателю Совета Министров СССР план научно-исследовательских и опытных работ на 1946–1948 годы, определить как первоначальную задачу – воспроизведение с применением отечественных материалов ракет типа ФАУ-2 (дальнобойной управляемой ракеты)». Головной организацией при Министерстве вооружения, на которую возлагалась реализация программы освоения ракетного оружия, определили Научно-исследовательский институт реактивного вооружения на базе завода № 88 (НИИ-88). Это предприятие было организовано в стенах артиллерийского завода № 8, построенного вблизи подмосковного поселка Подлипки[56 - Подлипки – город, расположенный к северо-востоку от Москвы. Поселок Подлипки возник как дачный в конце XIX века. С тех пор его название менялось три раза: поселок Калининский (после 1928 года), город Калининград (после 1938 года), Королёв (после 1996 года). Ныне Королёв является крупнейшим ракетно-космическим центром; в нем находятся основные производственные мощности РКК «Энергия», Центр управления полетами (ЦУП-М) и ряд конструкторских бюро, работающих на космонавтику.]. После начала войны завод был эвакуирован в Свердловск, но через четыре года часть рабочего коллектива вернулась в Москву. Однако в 1946 году никто и предположить не мог, что вскоре небольшой поселок превратится в современный город, а на военном заводе будут собирать космические корабли. 1.6 Подлипки и Капустин Яр Советским ракетчикам, работавшим в Германии над изучением трофеев, пришлось трудно – им достались только разрозненные чертежи, остатки ракет, отдельные узлы и агрегаты. В результате сложнейшей работы из деталей и агрегатов, найденных на складах различных фирм в Германии, Чехословакии и Польше, удалось собрать 29 ракет «А-4» и скомплектовать детали и агрегаты для еще 10 ракет. К концу 1946 года началась отправка советских специалистов на родину. Те, кто принимал непосредственное участие в изучении ракет «А-4», сразу вливались в инженерно-конструкторский коллектив отдела № 3 Специального конструкторского бюро (СКБ НИИ-88), который возглавил Сергей Павлович Королёв. В личном архиве Королёва сохранилась короткая записка, в которой он подводит итог командировки в Германию: «Главное не то, что мы узнали по технике, а то, что мы сплотили коллектив». Становление института потребовало решения целого ряда проблем. Одной из основных стала проблема подготовки кадров. Многие работники впервые встречались с ракетной техникой, нуждались в переквалификации. Времени на это отводилось немного, поэтому при НИИ-88 был создан консультационный пункт Всесоюзного заочного политехнического института. Позднее оформилась система подготовки кадров через вузы авиационной и оборонной промышленности. Вначале в состав отдела № 3 СКБ-88 входили 60 инженеров, 55 техников, 23 практика, но через год там было уже 310 специалистов, поезд со своим сложным хозяйством и вновь организованное экспериментальное производство. При этом штат всего СКБ составил 934 человека, а штат завода – 6830. В 1946 году началось и формирование филиала № 1 НИИ-88, в котором должны были работать немецкие специалисты, помогавшие изучать ракетную технику еще в Германии. Первая группа во главе с Хельмутом Греттрупом[57 - Греттруп, Хельмут (1916–1981) – немецкий инженер-ракетчик, специалист по системам управления. В центре Пенемюнде занимал должность заместителя руководителя Группы управления баллистических и управляемых ракет. Самый крупный представитель административного звена немецкого ракетного проекта, согласившийся сотрудничать не с американской, а с советской стороной. В 1946–1953 годах в качестве сотрудника филиала № 1 НИИ-88 на острове Городомля руководил разработкой ракет «Г-1», «Г-2», «Г-4» и «Г-5». Все эти проекты так и остались на бумаге. После возвращения в Германию по требованию советской стороны Х. Греттруп не был допущен к работе над ракетными технологиями и занимался электронными банковскими системами.] прибыла в Советский Союз в конце октября, а к июню 1947 года их численность достигла 177 человек. Некоторая часть прибывших была размещена с семьями в Подлипках, остальные – в филиале № 1 на острове Городомля озера Селигер. Перед немцами стояло две задачи: подготовка собранных «А-4» к испытательным запускам и проектирование улучшенной баллистической ракеты «Г-1»[58 - Баллистическая ракета «Г-1» (другое обозначение «R-10») была спроектирована на основе ракеты «А-4^-2» и рассчитана на дальность 600 км. Основные особенности проекта «Г-1»: сохранение габаритов «А-4» с уменьшением сухой массы и значительным увеличением объема для топлива; упрощение бортовой системы управления за счет передачи части ее функций наземному радиоуправлению; максимально возможное упрощение самой ракеты; применение отделяемой головной части и несущих баков; уменьшение площади хвостовых стабилизаторов; облегчение корпуса за счет широкого применения легких сплавов. Поскольку реализация проекта «Г-1» подразумевала внедрение целого ряда революционных технических новшеств, потребовалась бы обширная работа по их стендовой проверке, что в условиях изоляции на острове Городомля было очень трудно осуществить. Поэтому в итоге выбор был сделан в пользу ракеты «Р-2» конструкции С. П. Королёва.]. Однако коллектив филиала оказался слишком разношерстным, что не позволяло ему трудиться с полной отдачей. Кроме того, иностранцев старались не допускать к наиболее секретным темам, не давали разобраться в намерениях советских конструкторов, а рационализаторскими предложениями зачастую пренебрегали. Поэтому влияние филиала на растущее советское ракетостроение оказалось минимальным. Тем не менее эскизный проект «Г-1» был все-таки создан и дважды обсуждался на научно-техническом совете НИИ-88. Дальше работа не двинулась, а после успешных испытаний ракеты «Р-2» немецкие специалисты начали возвращаться в Германию. Отдельное внимание руководство НИИ-88 уделяло строительству – в Подлипках вырастал новый город. Первые объекты были заложены уже в 1946 году. Сначала реконструировали главный корпус завода – под сборку баллистических ракет. Параллельно оборудовались или возводились с нуля здания под научно-исследовательские лаборатории, испытательные станции и жилые дома. В условиях послевоенной разрухи строительные организации не могли обеспечить необходимый размах работ, поэтому к ним привлекались подразделения института. В 1947 году своими силами было выполнено строительных работ на 28 млн рублей, что составило 46 % всего объема капитальных вложений НИИ-88. В мае 1947 года институту передали часть территории находящегося в Подлипках аэродрома Министерства Вооруженных Сил[59 - Военный аэродром в Подлипках использовался для испытаний ракетной техники еще до того, как там был развернут ракетно-космический центр. Двадцать восьмого февраля, 10 и 19 марта 1940 года на этом аэродроме под руководством сотрудника НИИ-3 А. В. Палло были проведены успешные полеты ракетоплана «РП-318-1» конструкции С. П. Королёва. Ракетоплан пилотировал летчик-испытатель В. П. Фёдоров.] со всеми службами, производственными и жилыми помещениями. Там стали размещаться научно-исследовательские подразделения и экспериментальные цеха. Многообразие проблем, необходимость комплексного решения вопросов и связанная с этим широкая кооперация многих институтов и конструкторских бюро не позволяли Сергею Королёву ограничиваться техническим руководством в масштабах подчиненного ему отдела. Поэтому создание ракетной отрасли страны принял на себя не один человек, а целый технократический орган – сформированный еще в Германии Совет главных конструкторов. В Совет входили Сергей Павлович Королёв (председатель Совета и главный конструктор баллистической ракеты дальнего действия, НИИ-88), Валентин Петрович Глушко[60 - Глушко, Валентин Петрович (1908–1989) – советский инженер, конструктор ракетных двигателей. В 1921 году начал интересоваться вопросами космонавтики, с 1923 года переписывался с К. Э. Циолковским, с 1924 года публиковал научно-популярные и научные работы по вопросам космонавтики. В 1929 году закончил обучение в Ленинградском университете, работал в ГДЛ, где сформировал подразделение по разработке электроракетных и жидкостных двигателей. В 1934–1938 годах продолжил работу в РНИИ. В 1938 году В. П. Глушко был репрессирован, до 1940 года работал в конструкторской группе 4-го Спецотдела НКВД при Тушинском авиамоторостроительном заводе № 82. Затем был переведен в Казань, где продолжил работу в качестве главного конструктора КБ 4-го Спецотдела НКВД при заводе № 16. В 1944 году был досрочно освобожден, в 1956 году полностью реабилитирован. В 1946 году В. П. Глушко был назначен главным конструктором ОКБ-456 в Химках.] (главный конструктор жидкостных ракетных двигателей, ОКБ-456), Николай Алексеевич Пилюгин[61 - Пилюгин, Николай Алексеевич (1908–1982) – советский инженер-конструктор в области систем автономного управления ракетными и ракетно-космическими комплексами. После окончания школы в 1926 году начал работать слесарем, а затем файнмехаником в ЦАГИ. В 1930 году по направлению А. Н. Туполева поступил в Московское высшее техническое училище (МВТУ). С 1935 года работал в ЦАГИ и Летно-испытательном институте (ЛИИ). С 1944 году – в отделе управления НИИ-1 по ракетной технике. В 1946 году Н. А. Пилюгин становится главным конструктором автономных систем управления баллистических ракет в НИИ-885. С 1966 года Н. А. Пилюгин – действительный член Академии наук, с 1969 года – заведующий кафедрой Московского института радиотехники, электроники и автоматики.] (главный конструктор автономных систем управления, НИИ-885), Владимир Павлович Бармин[62 - Бармин, Владимир Павлович (1909–1993) – советский инженер, конструктор ракетно-космических и боевых стартовых комплексов. В 1930 году окончил механический факультет МВТУ. Работал на московском заводе «Компрессор» инженером-конструктором, с 1940 года – главный конструктор завода. Через несколько дней после начала Великой Отечественной войны «Компрессор» был переориентирован на производство реактивных снарядов и пусковых установок «БМ-8» и «БМ-13» («Катюш»). После войны В. П. Бармин возглавил ГСКБ «Спецмаш» – предприятие по созданию стартового, подъемно-транспортного, заправочного и вспомогательного наземного оборудования ракетных комплексов. Основатель и первый заведующий кафедрой «Стартовые ракетные комплексы» МГТУ имени Н. Э. Баумана. Кроме того, В. П. Бармин руководил созданием автоматических грунтозаборных устройств для исследования Луны и Венеры. С 1966 года – действительный член Академии наук СССР.](главный конструктор стартового ракетного комплекса, ГСКБ «Спецмаш»), Михаил Сергеевич Рязанский[63 - Рязанский, Михаил Сергеевич (1909–1987) – советский инженер, конструктор систем радиоуправления летательными аппаратами. Еще в школьные годы Рязанский увлекся радио, что определило всю его дальнейшую жизнь. В 1924–1927 годы на общественных началах руководил радиокружком, стал коротковолновиком-любителем. М. С. Рязанский первым в СССР установил радиосвязь с ледоколом «Красин», который шел спасать экспедицию Умберто Нобиле. В 1931 году М. С. Рязанский поступил в Ленинградский электротехнический институт и одновременно устраился в Особое техническое бюро (Остехбюро). В 1933–1935 годах учился в Московском электротехническом институте. Во время войны работал в НИИ-20 над первым советским радиолокатором «Пегматит». В 1946 году М. С. Рязанский перевелся в НИИ-885, а в 1947 году был назначен главным конструктором системы радиоуправления баллистических ракет. В 1955 году стал директором и главным конструктором НИИ-885. В 1958 году был избран членом-корреспондентом Академии наук.] (главный конструктор систем радиоуправления, НИИ-885), Виктор Иванович Кузнецов[64 - Кузнецов, Виктор Иванович (1913–1991) – советский ученый в области прикладной механики и автоматического управления. В 1938 году окончил Ленинградский индустриальный (политехнический) институт, затем разрабатывал гироскопические приборы для Военно-морского флота. В 1940 году В. Н. Кузнецов был назначен начальником отдела гироскопической техники секретного московского НИИ-10. В 1946 году возглавил ОКБ НИИ-10 Министерства судостроительной промышленности и руководил созданием бортовых командных приборов для баллистических ракет и космических аппаратов. В его бюро были созданы уникальные плавающие сферические гироплатформы, бесплатформенные инерциальные системы и многое другое. С 1968 года – действительный член Академии наук СССР.] (главный конструктор командных приборов, НИИ-10). В постановлениях Совета министров по каждой разработке на каждого главного конструктора возлагалась персональная ответственность. Поэтому совместные решения главных конструкторов могли быть оспорены только на высшем правительственном уровне. Зная об этом, они без колебаний предъявляли свои права, когда директивные указания от вышестоящего начальства могли нанести вред делу. Для испытательных запусков ракет многолюдное Подмосковье не годилось – НИИ-88 требовался полигон. Непосредственный выбор места был поручен гвардии генерал-лейтенанту Василию Ивановичу Вознюку[65 - Вознюк, Василий Иванович (1907–1976) – советский военачальник. В 1929 году окончил 1-ю Ленинградскую артиллерийскую школу имени Красного Октября, служил в Днепропетровске. Во время Великой Отечественной войны занимал различные командные должности в гвардейских минометных соединениях, оснащенных минометами «БМ-13» («Катюша»). В 1943 году В. И. Вознюку было присвоено звание генерал-лейтенанта артиллерии. С июня 1946 года по апрель 1973 года был начальником ракетного полигона Капустин Яр.], который во главе рекогносцировочной группы за короткое время обследовал семь перспективных районов на юге от Сталинграда. В конце концов он остановился на селе Капустин Яр в Астраханской области, в месте с координатами 48,4° северной широты и 56,5° восточной долготы. Окончательное решение о строительстве Государственного центрального полигона (ГЦП) в составе Министерства обороны СССР было принято правительством 23 июня 1947 года. Этим же решением на генерал-лейтенанта Вознюка возлагались обязанности начальника строительства. Позднее он стал начальником полигона. Первые офицеры приехали в Капустин Яр 20 августа. Разбили палатки, организовали кухню, госпиталь. На третий день началось строительство бетонного стенда для огневых испытаний двигателей по образцу стенда в Пенемюнде. В сентябре 1947 года из Германии на полигон прибыла бригада особого назначения (БОН) генерал-майора Александра Федоровича Тверецкого[66 - Бригады особого назначения (БОН) стали основой при формировании советских ракетных войск стратегического назначения. Первым таким соединением была созданная 15 августа 1946 года в составе Группы советских войск в Германии 72-я инженерная бригада особого назначения Резерва верховного главнокомандования (РВГК). Спустя год ее вывели из Германии в СССР на полигон Капустин Яр. В декабре 1950 года была сформирована вторая бригада особого назначения, в 1951–1955 годы – еще пять таких бригад. До 1955 года они были вооружены баллистическими ракетами «Р-1» и «Р-2», оснащенными головные частями с обычным взрывчатым веществом.]. Затем – два спецпоезда с оборудованием. За полтора месяца работ, к началу октября 1947 года, кроме испытательного стенда были сооружены стартовая площадка, временная техническая позиция, состоящая из четырех хранилищ и мастерской, монтажно-испытательный корпус и мост. Строители провели шоссе и железнодорожную ветку, соединяющую полигон с магистралью на Сталинград. Для наблюдения за полетами ракет были организованы радиолокационная служба с шестнадцатью локаторами, шесть кинотеодолитных постов, метеостанция, служба единого времени и узел связи. Что характерно, на первом этапе жилье практически не строилось: солдаты-строители и офицеры-испытатели ютились в палатках, в дощатых времянках, в крестьянских избах. Наибольшим комфортом пользовались те, кому повезло жить в спецпоездах, – в составе имелись довольно комфортабельные вагоны. Первого октября 1947 года Вознюк доложил в Москву о полной готовности полигона для проведения пусков ракет, а уже через две недели в Капустин Яр прибыла партия из десяти ракет «А-4» – она имела индекс «Т» и была собрана из немецких деталей на заводе НИИ-88. Ракеты готовили в Монтажно-испытательном корпусе. Под этим гордым наименованием подразумевался обыкновенный деревянный сарай – большой МИК со всеми лабораториями и службами был построен много позже. Согласно военной терминологии, ракета в сарае называлась «ракетой на технической позиции». Оттуда ее везли на «стартовую позицию», где устанавливали вертикально. Неподалеку от стартовой позиции за капониром находилась соединенная с нею проводами бронемашина, в которой у пульта сидел оператор. Для начальства была построена деревянная терраса, а рядом с ней отрыт глубокий окоп под броневыми щитами – на случай, если ракета отклонится в сторону и будет «угрожать» террасе. Тут же были установлены трофейные кинотеодолиты. Первое огневое испытание ракеты «А-4» на стенде провели 16 октября 1947 года. Сразу же обнаружились многочисленные отказы в наземной кабельной сети и штепсельных разъемах. Работа по исправлению шла круглосуточно, и уже через два дня, 18 октября 1947 года, с полигона был осуществлен первый пуск баллистической ракеты. Он показал хороший результат – «А-4» улетела на 206,7 км, поднявшись на высоту 86 км. Но выявилась и проблема – ракета отклонилась от цели на 30 км влево, а при входе в плотные слои атмосферы полностью разрушилась. В следующем пуске, состоявшемся 20 октября, снова использовали ракету серии «Т». Еще на активном участке полета пусковики зафиксировали сильное отклонение влево – до 180 км! Для решения проблемы были привлечены немецкие специалисты. Удалось выяснить, что на определенном режиме за счет вибрации возникала помеха полезному сигналу в цепях управления – введение в схему электрического фильтра устранило помеху. Во втором цикле испытаний, начатом после доработки системы управления и продолжавшемся до 13 ноября 1947 года, были запущены четыре ракеты серии «Т» и пять ракет серии «Н» (эту серию собрали советские и немецкие специалисты еще в Германии). До цели дошли только пять из девяти, показав максимально достижимую дальность в 274 км. Пока на полигоне проводились летные испытания, в НИИ-88 завершалась работа над комплектом технической документации по немецкой ракете с учетом требований отечественных ГОСТов, стандартов, нормалей и материалов. Весь этот кропотливый труд как бы подводил итог изучению и освоению трофейной ракетной техники, став первым шагом в создании отечественной баллистической ракеты дальнего действия – «Р-1». Оказалось, что создать почти такую же ракету в отечественных условиях не так-то просто. Первые сложности возникли при замене немецких материалов на отечественные аналоги. Немцы использовали при производстве «А-4» 86 марок и сортаментов стали, а наша промышленность в 1947 году могла предложить только 32 марки. По цветным металлам немцы применяли 59 марок, а наши ракетчики сумели найти дома только 21. Резины, прокладки, уплотнения, изоляции, пластмассы оказались самыми «трудными» материалами – для ракеты требовалось иметь 87 видов неметаллов, а советские заводы и институты были способны дать только 48. С большими трудностями давалось освоение производства рулевых машин систем управления. Первые образцы не удовлетворяли ни одному требованию по статическим и динамическим характеристикам. Больше того, они оказывались негерметичными. Масло, служившее рабочим телом в этих машинах, при создании рабочего давления пробивало резиновые уплотнения. Обнаружилось, что завод, только что освоивший изготовление корпусов машин, не обеспечивал даже минимального уровня качества. Основные детали насосов из специального чугуна и стали не имели при обработке нужной чистоты. К массовому браку шестеренчатых насосов прибавились неприятности с релейно-золотниковой группой. Попадание в золотниковый механизм самой малой соринки приводило к заеданию. Следствием такого «засора» была потеря управляемости и неизбежная авария ракеты. Когда в Германии изучали жидкостный ракетный двигатель, казалось, что сварка больших камер сгорания – нехитрое дело. Но дома сварочные швы получались бугристыми, изобиловали прожогами, а при испытаниях давали трещины. Через решение всех этих проблем у конструкторов зрело осознание того, что общая культура советского послевоенного производства не соответствует уровню создаваемой техники. Необходима была не только оперативная технологическая модернизация, но и глубокая перестройка психологии инженеров и рабочих. Несмотря на отсталость и формальную возможность ограничиться копированием ракеты «А-4» для первой серии «Р-1», конструкторы все же стремились сразу внедрить новые решения. В итоге были существенно переработаны конструкции хвостового и приборного отсеков с целью их усиления. За счет увеличения заправки спиртом повысили и расчетную дальность полета – с 250 до 270 км. Первая попытка запуска «Р-1» была предпринята на полигоне Капустин Яр 17 сентября 1948 года, то есть через одиннадцать месяцев после «А-4». Сразу после старта ракета с серийным номером I-4 наклонилась и перешла в горизонтальный полет. Пролетев 10 км с работающими двигателями, она свалилась в пике. Во время старта был поврежден стартовый стол. Многочисленные неполадки, которые приходилось устранять прямо на полигоне, задерживали следующий запуск «Р-1». Но все-таки он состоялся – 10 октября 1948 года. На этот раз ракета с серийным номером «1–1» ушла на расстояние в 250 км. Запуск был признан успешным, но это оказалась единственная удача в серии из девяти ракет. Причины аварий были в основном технологического характера: низкое качество изготовления агрегатов и систем ракеты, плохой контроль узлов и приборов. Чтобы спасти молодую ракетную отрасль от закрытия, главным конструкторам пришлось заново проверять все технологические цепочки. Для второго этапа летных испытаний было подготовлено 20 ракет, из них 10 пристрелочных и 10 зачетных. При запусках осенью 1949 года 17 ракет этой партии выполнили свою задачу. В итоге постановлением правительства от 25 ноября 1950 года ракета «Р-1» была принята на вооружение Советской армии, а в 1952 году запущена в серийное производство на заводе № 586 в Днепропетровске. Сегодня многие специалисты задаются вопросом: было ли оправдано принятие на вооружение «Р-1» и запуск ее в серийное производство? Ведь с военной точки зрения она безнадежно устарела… Однако если взглянуть на эту историю с точки зрения подготовки профессиональных кадров, приобретения опыта и повышения технологической культуры, то вклад «Р-1» трудно переоценить – за четыре года советские ракетчики преодолели десятилетнее отставание, и в СССР появилась база для развития новой отрасли. Больше того, именно «Р-1» позволила начать непосредственное исследование космоса. 1.7 Первые геофизические Еще будучи в Германии, Сергей Королёв понял, что на основе «А-4» можно сконструировать более совершенную ракету с дальностью до 600 км. Установив, что немецкий двигатель поддается форсированию по тяге от 16 до 35 %, главный конструктор предложил пять вариантов новой ракеты, один из которых был принят за основу. Предполагалось, что ракета, получившая обозначение «Р-2», будет в основном аналогична «А-4», но с удлинением цилиндрической части на 1,9 м, которое даст увеличение емкости баков. Несмотря на крайне сжатые сроки и высокую занятость, к концу 1946 года удалось подготовить полный комплект чертежей, пояснительную записку и даже изготовить три опытных образца «Р-2». 25 апреля 1947 года состоялась защита эскизного проекта ракеты «Р-2» на первом заседании ученого совета НИИ-88. Серьезную озабоченность вызывал один вопрос. Расчеты указывали, что удлиненная ракета будет просто разваливаться при возвращении в плотные слои атмосферы. Ссылаясь на работы Константина Циолковского по составным ракетам[67 - Идею сложных космических ракет, состоящих из однотипных ракет поменьше, К. Э. Циолковский разрабатывал с 1916 года. Впервые он описал эту концепцию в научно-фантастической повести «Вне Земли» (1918): «От простой ракеты перешли к сложной, т. е. составленной из многих простых. В общем, это было длинное тело, формы наименьшего сопротивления, длиною в 100, шириною в 4 метра, что-то вроде гигантского веретена. Поперечными перегородками оно разделялось на 20 отделений, каждое из которых было реактивным прибором, т. е. в каждом отделении содержался запас взрывчатых веществ, была взрывная камера с самодействующим инжектором, взрывная труба и пр».], Королёв выдвинул оригинальную идею: сделать боеголовку ракеты отделяемой, чтобы она падала на цель самостоятельно и не зависела на последнем участке баллистической траектории от носителя. По ходу доработки проекта было предложено еще несколько революционных усовершенствований. Например, с помощью наддува баки можно было сделать настолько жесткими, чтобы они сами воспринимали и «держали» внешние нагрузки. За счет этого бак получается вместительнее и исчезает нужда в дополнительной защитной оболочке, которая утяжеляет ракету. Кроме того, исследования показали, что большие хвостовые стабилизаторы не улучшают летные характеристики ракеты и от них имеет смысл отказаться. К концу 1947 года проект был доработан, однако новую оригинальную схему удалось реализовать лишь частично: ограничились несущим баком горючего, оставив защитную оболочку на кислородном баке и хвостовой отсек со стабилизаторами. Сделать кислородный бак несущим предполагалось в окончательном варианте ракеты. Поэтому первый вариант был выделен в особую программу, а ракета получила обозначение «Р-2Э». Пристального изучения требовал и вопрос отделяемой боеголовки. Сначала инженерам НИИ-88 казалось, что в новой «составной» схеме нет ничего сложного: двигатель выключается, боеголовка отбрасывается пружиной или отстреливается пиропатроном. Но почти сразу проявились трудности: пока двигатель работает, боеголовку не отделишь (двигатель как бы подпирает ее снизу корпусом ракеты), а после выключения двигателя отделять ее невыгодно, ведь ракета уже неуправляема и боеголовка может отклониться от курса. Поэтому отделять надо точно в момент выключения двигателя. Но в том-то и дело, что этого момента не существует! После отсечки топлива догорание в камере продолжается, тяга стремительно уменьшается, а совсем исчезает лишь через 7-10 секунд. Для определения точного момента отсечки требовалась математическая модель догорания топлива, но на ее создание могли уйти месяцы, если не годы. Сергей Королёв решил не дожидаться появления теоретических соображений по этому поводу, а провести опытные отстрелы боеголовки на «Р-1» – он полагал, что ко времени, когда начнутся испытания «Р-2Э», все вопросы с отделяемой головной частью будут решены. Так появилась ракета «Р-1А» – «Аннушка», как ласково называли ее на полигоне. Работа над отделяемой боеголовкой позволила Королёву сделать следующий шаг – пригласить к участию в ракетной программе академических ученых. Сергей Павлович продолжал гнуть свою «космическую» линию в ракетостроении, и ему были нужны проверенные данные по высшим слоям атмосферы, чтобы приступить к проектированию космических аппаратов. Интересно, что еще в 1944 году ученые Физического института Академии наук обсуждали вопрос о создании пороховой ракеты «210», способной поднять на высоту 40 км приборы, измеряющие космическую радиацию. В июне 1946 года под Ленинградом были запущены три такие ракеты с аппаратурой, изготовленной группой профессора Сергея Николаевича Вернова[68 - Вернов, Сергей Николаевич (1910–1982) – советский физик. После окончания средней школы поступил сначала в Механический техникум, но уже в следующем году стал студентом физико-механического факультета Ленинградского политехнического института, который окончил в 1931 году. Еще будучи студентом, С. Н. Вернов начал работать в Государственном Радиевом институте, куда и был направлен по распределению. Сферой интересов молодого научного работника стали космические лучи, причем для их изучения он предлагал использовать высотные радиозонды и ракеты. В 1939 году защитил докторскую диссертацию, продолжил работу в Физическом институте Академии наук (ФИАН). В 1943 году перешел в Московский государственный университет (МГУ), на физический факультет. Одним из первых начал сотрудничество с ракетчиками: с 1947 года аппаратура, разработанная под руководством С. Н. Вернова, устанавливалась на советские баллистические ракеты, а впоследствии – на искусственные спутники Земли. В 1968 году С. Н. Вернов стал академиком АН СССР по Отделению ядерной физики.], однако все старты завершились авариями. Впрочем, Вернов не разочаровался в идее, а когда до него дошли слухи, что где-то в заволжских степях пускают большие ракеты, стал наводить справки и добрался до Королёва. Летом 1947 года главный конструктор пригласил профессора Вернова и его сотрудников в Подлипки, водил по заводу и бюро, показывал образцы ракетной техники, которую вывезли из Германии. Закончив экскурсию, Королёв начал расспрашивать физиков об их планах. Во время беседы определили вес первого блока научно-исследовательской аппаратуры – 500 кг. Заручившись поддержкой руководства Академии наук, профессор Вернов получил у министра вооружений Дмитрия Устинова разрешение установить свои приборы на двух «А-4», привезенных из Германии. Осенью 1947 года физики приехали в Капустин Яр. Первый старт ракеты с научным блоком состоялся уже 2 ноября и прошел почти идеально: ракета отклонилась всего лишь на 5 км в сторону от расчетной траектории. Сигналы регистрирующей аппаратуры были приняты, раскодированы и проанализированы. Второй запуск 13 ноября оказался еще «чище» – отклонение не превысило 80 м, а ученые получили массу данных для обработки и осмысления. Круг интересов физиков расширялся, и, узнав о проекте «Р-1А» с отделяющейся головной частью, они пришли в восторг: теперь можно было точно измерить газовый состав и температуру верхних слоев атмосферы, не опасаясь неизбежной «помехи», создаваемой продуктами горения «цельной» ракеты. Для научных исследований военные выделили восемь трофейных ракет «А-4», которые инженеры НИИ-88 полностью перебрали, произведя необходимые замены. В частности, они установили хвостовые отсеки собственной конструкции, а также механизм для отделения головной части, который работал следующим образом: после «остановки» двигателя прибор управления выдавал команду на подрыв пиропатронов разрывного болта, соединяющего головную часть с корпусом ракеты; затем пружинный механизм плавно отталкивал головную часть. В итоге при том же диаметре корпуса ракета «Р-1А» стала на метр длиннее исходной «А-4». Седьмого мая 1949 года состоялся первый старт «Аннушки». Отделившаяся головная часть упала в 210 км от места запуска. Возбужденный Королёв тут же потребовал самолет и полетел в район цели, с воздуха увидел две воронки, уговорил пилотов посадить «Ли-2» и самолично осмотрел места падения ракеты и отделяемой головки. Более или менее успешно провели еще три баллистических старта с отделением головной части, а пятую ракету решено было пустить вертикально с аппаратурой физиков. Научно-исследовательский блок «ФИАР-1» помещался в цилиндрический контейнер, который закладывался в мортиру, установленную на хвостовом отсеке рядом со стабилизаторами, и на заданной высоте выбрасывался с помощью сжатого воздуха. Через 4 секунды начинался забор проб. Для облегчения поисков после приземления контейнер снабжался радиопередатчиком. На каждой из двух ракет, предназначенных для вертикальных пусков, устанавливались по две мортиры и по два прибора «ФИАР-1». Двадцать четвертого мая 1949 года первые два блока «ФИАР-1» были подняты ракетой «Р-1А» на высоту 110 км. Механизм отделения головной части сработал как надо, контейнеры разлетелись в разные стороны от ракеты, покидая зону «паразитных газов». Некоторое время контейнеры летели без включения аппаратуры, наконец начали работать, но в этот момент вдруг раньше запланированного раскрылись парашюты. Режущий напор воздуха превратил их в пучок рваных лент, и контейнеры понеслись к земле. Утешились физики через четыре дня, 28 мая, когда научные приборы целыми и невредимыми вернулись на землю с высоты 102 км. Научные исследования на модифицированных ракетах «Р-1» проводились в течение семи лет – ракета оказалось очень удобной для изучения верхних слоев атмосферы. Правда, обозначались они уже не «Р», а «В» (от «вертикаль»). Так, на основе «Р-1А» были разработаны и летали «В-1А», «В-1Б», «В-1В», «В-1Д» и «В-1Е», на основе «Р-2» – «В-2А», на основе «Р-5» – «В-5А». Что касается большой ракеты «Р-2», то после цикла испытаний она была еще доработана и принята на вооружение в 1952 году под индексом 8Ж38… Отделяемая головная часть давала возможность не только определить состав верхних слоев атмосферы, но и начать медико-биологические эксперименты по изучению влияния факторов ракетного полета на живые организмы. Двадцать восьмого августа 1950 года Сергей Королёв утвердил техническое задание на разработку ракеты «В-1Б» и отделяемой герметичной кабины, в которой можно разместить подопытных животных. Но что это будут за животные? Ответить на вопрос взялся Владимир Иванович Яздовский[69 - Яздовский, Владимир Иванович (1913–1999) – советский ученый и конструктор, специалист по авиационной и космической медицине. В 1941 году окончил Ташкентский медицинский институт и подготовил кандидатскую диссертацию по нейрохирургии. Во время Великой Отечественной войны проходил службу в должности начальника медицинской службы 289-й штурмовой авиадивизии. После окончания войны был переведен в Научно-исследовательский испытательный институт авиационной медицины. В институте прошел путь от научного сотрудника, начальника лаборатории, отдела, управления до заместителя начальника института по науке (космическая биология и медицина). Под руководством В. И. Яздовского изучались медицинские проблемы разработки скафандров и герметичных кабин, осуществлялись биологические исследования верхних слоев атмосферы и космического пространства. В 1964–1967 годах В. И. Яздовский работал в Институте медико-биологических проблем (ИМБП) Минздрава СССР заведующим сектором и заместителем директора по науке.], до того руководивший лабораторией герметических кабин и скафандров в Государственном Научно-исследовательском испытательном институте авиационной медицины (ГНИИИ)[70 - На базе сектора военно-воздушной службы Научно-исследовательского испытательного санитарного института РККА 1 января 1935 года был создан Авиационный научно-исследовательский санитарный институт РККА. Позднее он был переименован в Научно-исследовательский испытательный институт авиационной медицины РККА имени И. П. Павлова, а затем – в Государственный научно-исследовательский испытательный институт (авиационной и космической медицины) Министерства обороны Российской Федерации. Первого января 1999 года институт преобразован в Научно-исследовательский испытательный центр (авиационно-космической медицины и военной эргономики) в составе Государственного научно-исследовательского испытательного института военной медицины Министерства обороны Российской Федерации.]. Он сформировал группу из трех врачей и одного инженера, после чего приступил к работе. Как и следовало ожидать, между членами группы возникли споры по выбору подопытных животных. Предлагали начать исследования с грызунов. Рассматривался вопрос об использовании обезьян – в США к тому времени на трофейных «А-4» уже летали макаки-резусы. Однако у последних часто случались нервные срывы, поэтому ученые вынуждены были погружать обезьян в наркоз, что значительно снижало ценность результатов. Кроме того, ни одной из обезьянок не повезло вернуться на Землю живой – ракеты и их головные части разрушались[71 - Из всех обезьянок, которых американские ученые запускали в головных частях ракет на первом этапе исследований, без проблем вернуться на Землю повезло только филиппинским макакам Майку и Патриции – 21 мая 1952 года в ракете Aerobee-26 они поднялись на высоту 62 км.]. После долгих дискуссий было решено, что биологическим объектом для космических экспериментов станет собака, ведь она хорошо поддается тренировке и быстро привыкает к различным ограничениям. Не менее важно и то, что ее физиология изучалась в России на протяжении десятилетий, а работы профессора Павлова[72 - Павлов, Иван Петрович (1849–1936) – один из авторитетнейших ученых России, физиолог, психолог, создатель науки о высшей нервной деятельности и представлений о процессах регуляции пищеварения; основатель крупнейшей российской физиологической школы; лауреат Нобелевской премии в области медицины и физиологии 1904 года «за работу по физиологии пищеварения».] широко растиражированы и знакомы будущим космическим медикам со студенческой скамьи. Для полетов отбирались собаки весом не более 7 кг. Другое необходимое условие – отличное здоровье, выраженное в высокой сопротивляемости заболеваниям и устойчивости к различным неблагоприятным факторам внешней среды, что присуще прежде всего беспризорным беспородным собакам. Большое значение имел и возраст: старые животные и щенки хуже переносят неблагоприятные условия, а последние еще вертлявы, не в меру игривы, что может привести к срыву экспериментов. На основании опытов было установлено, что предпочтительнее взять собак в возрасте от двух до шести лет. Цвет шерсти тоже имел значение. Желательно, чтобы шерсть была белой и гладкой – в ходе полета для наблюдения за животными использовались автоматические кинокамеры, а они в те времена плохо передавали полутона; длинная шерсть мешает фиксации датчиков, лохмы загрязняют кабину и станок, на котором фиксируется животное. Отобранные собаки подвергались различным длительным испытаниям, и те животные, которые выдержали все экзамены на «хорошо» и «отлично», переводились в разряд кандидатов в космонавты. Всего в виварии собрали 32 собаки. Здесь стояли квадратные клетки с деревянным полом – собаки быстро привыкали к ним и, возвращаясь с прогулки, прыгали в клетку столь же охотно, как и покидали ее. Кормили хвостатых космонавтов два раза в день. В пищу входили овощи, рыба, жир, мясо, молоко и другие продукты. Собак, которых готовили для полетов на ракете и находящихся на особом режиме, переводили на особое меню: колбаса, бульон, консервы, сладкое и витамины. На протяжении недель собирались и анализировались данные о поведении каждого животного в виварии, на прогулке, во время еды, об их отношениях между собой, с окружающей обстановкой и людьми. Собранные сведения помогали правильно понимать реакции животных во время и после экспериментов. Более спокойных рекомендовалось использовать в длительных испытаниях. Геофизическая ракета «Р-1Б» («В-1Б») на пусковой установке (© РКК «<Энергия») Первый полет ракеты с собаками состоялся 22 июля 1951 года. После совещания Яздовский с коллегами выбрали двух первых «космонавтов» – псов Дезика и Цыгана, демонстрировавших спокойствие и хорошую выносливость. Следует отметить, что при запусках с животными использовались ракеты с двумя обозначениями: «В-1Б» и «В-1В». Они практически ничем не отличались друг от друга – только на «В-1В» вместо научно-исследовательской аппаратуры Физического института монтировалась парашютная система спасения корпуса ракеты. Дезику и Цыгану предстояло отправиться в космос на ракете «В-1В». Запуск прошел успешно, ракета поднялась до высоты 101 км[73 - По другим данным, ракета не пересекла условную границу космоса, поднявшись на высоту 87 км.], а через пятнадцать минут отделяемая головная часть на парашюте совершила мягкую посадку неподалеку от места старта. Обе собаки спокойно перенесли полет – никаких сдвигов в их физиологическом состоянии специалисты не обнаружили. Только Цыган немного пострадал: при ударе во время приземления погнулся край лотка и слегка повредил ему кожу на брюхе. Поэтому во время второго запуска 29 июля, который должен был зафиксировать успех и ответить на вопрос, остаются ли в организме следовые реакции на стресс, вместо него с Дезиком отправили Лису. Второй полет собак закончился их гибелью – из-за сбоя барореле парашют не раскрылся, кабина от удара о землю разрушилась. Так Дезик из первого пса-космонавта превратился первого погибшего пса-космонавта. А его напарника было решено в полет больше не посылать, сохранив для «истории». В новый экипаж назначили псов Мишку и Чижика. Их первый полет на ракете «В-1Б» состоялся 15 августа. Поскольку неисправность баро реле удалось быстро выявить и устранить, этот полет прошел успешно. В четвертый полет 19 августа на ракете «В-1В» отправились Смелый и Рыжик. У медиков накапливались многочисленные данные, на основе которых можно было составлять программу для тренировки и полета человека. Оставались два пуска из запланированных шести, а картина уже была ясна. В пятый полет 28 августа на ракете «В-1Б» снова подготовили Мишку и Чижика. Повторное пребывание в герметической кабине не вызвало у них никаких отрицательных реакций. Из новинок для поддержания давления в кабине был установлен пружинный автоматический регулятор. Дело в том, что Сергей Королёв постоянно требовал усложнения экспериментов, введения в комплекс новых приборов. Механизм регулятора работал так: при повышении давления в кабине игла отжимается и открывает отверстие в стенке, избыток газовой смеси выходит в открытое космическое пространство, при нормализации давления игла перекрывает отверстие в стенке кабины. В лабораторных условиях регулятор работал идеально, но как он поведет себя в космосе?.. Старт и приземление прошли, как обычно, но, вскрыв люк, ученые обнаружили, что собаки мертвы. Анализ показал, что игла-регулятор давления не перекрыла отверстие в стенке кабины, произошла разгерметизация, и животные погибли от недостатка кислорода. Обратный ход иглы при вибрациях оказался недостаточно надежным. Информация эта, несмотря на гибель собак, оказалась очень ценной: конструкторы убедились, что на первом этапе придется отказаться от регулятора давления. При подготовке шестого полета вместо регулятора в стенке кабины просверлили отверстие, диаметр которого был точно рассчитан на стравливание газовой смеси при избыточном давлении. Завершающий серию пуск ракеты «В-1Б» состоялся 3 сентября 1951 года. Космонавтами были назначены псы Непутевый и Рожок. Однако случился казус: перед выездом на полигон вдруг выяснилось, что Рожок исчез. Времени на поиски не было, и родилась мысль взять неподготовленную собаку. Около столовой всегда можно встретить бездомных дворняг – Яздовский приказал подыскать среди них собаку, подходящую по весу и масти. Ее нашли, вымыли, подстригли, обрядили в костюм. Успели даже кличку придумать: ЗИБ – «запасной исчезнувшего бобика». В суматохе не разобрались, что ЗИБ – еще щенок. Докладывая Сергею Королёву о готовности, Яздовский слукавил: не упомянул о замене Рожка ЗИБом. И новоиспеченный космонавт не подвел – легко перенес путешествие и вернулся живым. То, что перегрузки выдержал без вреда для здоровья неподготовленный щенок, еще раз подтвердило: космическое путешествие сумеет пережить любое здоровое существо. Полеты собак на ракетах «В-1Б» и «В-1В» стали серьезным шагом на пути к пилотируемой космонавтике. За эту работу члены группы Владимира Яздовского и он сам были награждены Государственной премией. 1.8 Пилотируемые ракеты Тяжелые баллистические ракеты «Р-1» и «Р-2», созданные на основе немецкой трофейной техники, в принципе не могли развить космическую скорость. Зато они успешно доставляли на космическую высоту отделяемый отсек весом до тонны. Следовательно, ничто не мешало разместить в таком отсеке пилота, который совершил бы суборбитальный полет. Идея высотного (или суборбитального) «прыжка» возникла сразу после войны, когда советские конструкторы ознакомились с возможностями «А-4». Такой проект выдвинули Михаил Клавдиевич Тихонравов и Николай Гаврилович Чернышев[74 - Чернышев, Николай Гаврилович (1906–1953) – советский инженер-химик. Первый опыт научной работы приобрел, будучи студентом Донского политехнического института. После окончания Ленинградского химико-технологического института работал в ГДЛ у В. П. Глушко, затем – в ГИРД, РНИИ, КБ-7 и других организациях. В первые дни Великой Отечественной войны Н. Г. Чернышев добровольцем ушел на фронт. В 1944 году участвовал в первой экспедиции советских специалистов на немецкий ракетный полигон в Польше. Затем возглавил в НИИ-1 лабораторию по изучению и воспроизведению топливных компонентов немецких ракет и взрывчатых веществ. В 1946 году перешел в НИИ-4 в группу М. К. Тихонравова, разрабатывавшую проект пилотируемой высотной ракеты «ВР-190». В эти же годы Н. Г. Чернышев одним из первых начал изучать историю ракетостроения в стране, публиковать статьи, писать книги по истории ракетостроения и межпланетным полетам. В 1948 году он принял активное участие в создании и работе факультета «Ракетно-космическая техника» МВТУ имени Н. Э. Баумана.] – соратники Сергея Королёва по ГИРД. Наметки проекта, получившего обозначение «ВР-190», были оформлены уже в середине 1945 года. Предлагалось доработать трофейную ракету и снабдить ее герметичной кабиной на двух пилотов-испытателей, созданной с использованием опыта изготовления гондол довоенных стратостатов. Главной задачей было изучить комплексное влияние вибрации, перегрузки и последующей невесомости на организм человека. В проекте «ВР-190» Тихонравов впервые предложил решения, которые позднее нашли применение в конструкции космических кораблей. При достижении вершины баллистической траектории кабина отделялась от ракеты при подрыве соединительных пироболтов, опускалась на парашюте и приземлялась с применением двигателей мягкой посадки, которые включались выдвигаемой электроконтактной штангой. В разреженной атмосфере, где никакие воздушные рули не годились, для стабилизации полета кабины применялись маленькие реактивные двигатели. Продумана была и система жизнеобеспечения. Интересно, что аэродинамические обводы кабины, выполненной в виде «фары», оказались близки к обводам современных спускаемых аппаратов. В 1946 году по материалам проекта было составлено техническое предложение, с которым Михаил Тихонравов выступил на коллегии Министерства авиационной промышленности. У него уже имелся положительный отзыв Академии наук, однако министерство после обсуждения посчитало, что ракетные запуски – это не дело авиаторов. Тогда авторы обратились к Иосифу Сталину непосредственно. Министру авиапрома пришлось подготовить докладную записку «О рассмотрении предложения Тихонравова и Чернышева о создании ракеты для полета человека на высоту 100–150 километров» (от 20 июня 1946 года). «По Вашему поручению, – писал министр, – мною рассмотрено предложение группы инженеров, руководимой товарищами Тихонравовым и Чернышевым, о создании ракеты, предназначенной для полета с двумя человеками и аппаратурой на высоту 100–150 километров. Для рассмотрения этого предложения мною была создана экспертная комиссия под председательством заместителя начальника ЦАГИ академика Христиановича. Комиссия дала положительное заключение по идее, изложенной в предложении этой группы инженеров»[75 - Речь идет об Экспертной комиссий под председательством заместителя начальника ЦАГИ академика С. А. Христиановича, созданной специально для изучения проекта «ВР-190».]. Подытоживая, министр предлагал принять проект к реализации. На начальном этапе следовало изучить собранные материалы по немецкой ракете «А-4», а создание и испытание летных образцов провести непосредственно в Германии. Затем планировалось изготовить 10–15 корпусов ракет со всеми необходимыми изменениями, предложенными группой Тихонравова-Чернышева. При этом министр отмечал, что опыт работы с немецкими ракетами есть только у Тихонравова, а значит, в два года, запрошенные конструкторами на реализацию проекта, уложиться вряд ли получится. Сталин положительно отозвался о проекте «ВР-190». Но работа всё равно не сдвинулась с мертвой точки, поскольку авторы суборбитального корабля и Министерство авиапромышленности долго не могли прийти к взаимопониманию. Тогда Тихонравов и Чернышев обратились к начальнику Научно-исследовательского института № 4 Министерства обороны (НИИ-4 МО) Алексею Ивановичу Нестеренко[76 - Нестеренко, Алексей Иванович (1908–1995) – советский военачальник. В вооруженных силах с 1925 года по 1966 год. Участник боев с белокитайцами во время конфликта на КВЖД, Советско-финской и Великой Отечественной войн. Командовал подразделениями гвардейских минометных частей («БМ-8», «БМ-13»), дослужившись до заместителя командующего артиллерией фронта. В 1943 году получил звание гвардии генерал-лейтенанта артиллерии. В 1955–1958 годах стал первым начальником полигона Тюра-Там, возглавлял НИИ-4 и ракетный факультет Академии имени Ф. Э. Дзержинского.] – тот отнесся к их затее с благосклонностью, и в том же 1946 году группа перебралась к нему «под крыло». Сначала работы над проектом шли по основному целевому назначению – обеспечению вертикального ракетного полета пилотов в верхние слои атмосферы. Однако вскоре вокруг проекта, за которым было зарезервировано новое название «Победа», сложилась весьма неблагоприятная обстановка, потому что он не соответствовал общей тематике института. Дело доходило до жалоб в Центральный Комитет КПСС. По свидетельству одного из участников тех давних событий, сам Сергей Павлович Королёв высказывался в кулуарах против «ВР-190». Учитывая осложнение ситуации, руководство института поменяло направленность проекта. Он получил название «Ракетный зонд» и с 1947 года был нацелен на изучение парашютных систем спасения отработавших ступеней и их головных частей в процессе проведения испытаний. После принятия этих поправок проект получил официальную положительную оценку НИИ-88, подписанную Королёвым. Однако Тихонравов потерял интерес к проекту и устранился от этих работ. Тему довели до итогового отчета другие. «Ракетный зонд» прошел натурные испытания на реальной технике, в результате чего ряду сотрудников НИИ-4 была присуждена Сталинская премия. Отказ Королёва поддержать «Победу» легко объясним. Главный конструктор терпеть не мог прожектерства в любом виде и понимал, что, пока баллистические ракеты не поставлены на «поточное» производство, планировать пилотируемый суборбитальный полет преждевременно. Кроме того, грузоподъемность «А-4» (и, соответственно, «ВР-190») не соответствовала амбициозной программе экспериментов. Время пилотируемых ракет пришло позже – когда Сергей Королёв с коллегами взялись за реализацию проекта, получившего обозначение «Р-5»[77 - Перед «Р-5» в бюро С. П. Королёва прорабатывался проект баллистической ракеты «Р-3» на дальность полета 3000 км. «Р-5» родилась как модификация экспериментальной «Р-3А» – для экономии времени и ресурсов вместо экспериментальной сразу решили делать боевую ракету.]. Штаты НИИ-88 и подчиненного Королёву отдела № 3 очень быстро росли. К началу 1950 года в отделе трудилось уже 278 человек, а фронт работ резко расширился. Поэтому 26 апреля 1950 года приказом министра вооружения было создано Особое конструкторское бюро № 1 (ОКБ-1) по разработке ракет дальнего действия. Одной из первых задач, которую должно было решить новоиспеченное бюро, стало создание стратегической ракеты для доставки атомного заряда на расстояние свыше 1000 км. Немецкая компоновка, реализованная в ракетах «А-4», «Р-1» и «Р-2», не подходила для ракеты, рассчитанной на такую дальность, и ее пришлось пересмотреть. Прежде всего следовало максимально облегчить саму ракету. Для начала конструкторы отказались от герметичного и тяжелого приборного отсека. Все приборы системы управления, за исключением чувствительных элементов (гироприборов и интеграторов), размещались в отсеке, который был прямым продолжением хвостового. Чувствительные же элементы во избежание влияния вибраций отодвинули подальше от двигателя, в межбаковое пространство, закрепив на специальных кронштейнах. Затем была реализована старая идея, возникшая еще при проектировании «Р-2», – оба топливных бака (этиловый спирт и жидкий кислород) сделали несущими, что позволило дополнительно разгрузить ракету. Опыт работы с трофеями показал, что бак с жидким кислородом можно избавить от массивной теплоизоляции, которую ставили немцы. Испарения оказались не столь значительны, как думали раньше, и вполне могли быть компенсированы за счет подпитки на старте. С тех пор такая конструкция бака с жидким кислородом стала типовой, и можно увидеть, как на готовой к старту ракете в месте его расположения оболочка белеет от инея[78 - Благодаря «кислородному» инею возникла одна из традиций современных ракетчиков. Военнослужащие космодрома Плесецк выводят на нем имя «ТАНЯ». Кто придумал эту традицию и кто такая Таня, никто уже не помнит, но однажды имя не написали – и «семерка» взорвалась на старте.]. Был закрыт и еще один важный вопрос. Отделяемая боеголовка «Р-5» входила в атмосферу со скоростью 3 км/с – понятно, что при этом она сильно нагревалась. Для защиты ее от термического разрушения были созданы специальные «уносимые» теплозащитные покрытия – избыточная тепловая энергия поглощалась за счет испарения поверхностного слоя покрытия и отводилась потоком воздуха. Ныне этот принцип теплозащиты широко используется в ракетно-космической технике. В 1953 году, перед началом полигонных запусков, в филиале № 2 НИИ-88, расположенном в комплексе новых зданий под городом Загорском[79 - Испытательный комплекс под Загорском (Сергиев Посад) функционирует и сегодня. В 1956 году это предприятие получило название НИИ-229, а в 1967 году – Научно-исследовательский и конструкторский институт химического машиностроения (НИИхиммаш).], провели огневые стендовые испытания с целью определения реальных температур компонентов топлива в баках ракеты, проверки двигательных систем, отработки циклограммы запуска[80 - Циклограмма запуска – таблично-графическое изображение последовательности операций подготовки к запуску и запуска с указанием времени, затрачиваемого на каждую операцию. Применительно к ракете циклограмма начинается с операции ее установки на пусковое устройство и заканчивается ее пуском. За нуль отсчета времени принимают момент отрыва ракеты от пусковой установки (Т 0.00.00). Время свершения событий, происходящих до момента «нуль отсчета времени», обозначается на временной оси со знаком «минус». Если, например, заправка баков окислителем должна начаться за 5 часов 31 минут 12 секунд до взлета ракеты, то это событие на временной оси циклограммы происходит в момент времени Т-5.31.12. Время свершения событий, происходящих после нуля отсчета времени, обозначается со знаком «плюс». Например, если отделение первой ступени происходит на 123-й секунде после подъема ракеты, то это событие на временной оси циклограммы происходит в момент времени Т+0.02.03. Применительно к двигателю или другому устройству циклограмма отражает последовательность команд на срабатывание его элементов, обеспечивающих заданный режим работы.]. Впоследствии огневые испытания («прожиги») узлов и элементов новых ракет в полном сборе на стенде станут в бюро Королёва обязательными. Первый этап запусков на полигоне Капустин Яр был проведен весной 1953 года. Всего было испытано в полете 8 ракет: на дальность 270, 550 и 1200 км. Запуски на дальность 270 км прошли более чем успешно, а при испытаниях на 1200 км обнаружились недоработки: на 65-й секунде полета возникла неустойчивость в движении, после чего произошло разрушение «изделия» из-за потери управляемости. Последний пуск первого этапа состоялся 23 мая – условия испытаний для проверки устойчивости движения в этом случае были более жесткими, так как ракету снабдили четырьмя подвесными головными частями, которые увеличивали величину воздушного сопротивления. Несмотря на опасения, полет на дистанцию в 550 км прошел нормально. Хотя полигонные испытания были признаны в целом успешными, стало ясно, что необходимо гарантировать устойчивость ракеты при движении. В конструкцию и в управление был внесен ряд изменений. К примеру, серьезной доработке подвергли систему отделения головной части: для ее крепления использовались инерционные болты, из-за чего в полете наблюдались колебания боеголовки относительно корпуса, – в дальнейшем их заменили стяжными болтами с пневматическим разъемом. Второй и третий этапы испытаний «Р-5» начались поздней осенью 1953 года, а завершились в феврале 1955 года. Ракета показала себя очень хорошо, но пришлось дорабатывать систему радиоуправления дальностью. Система радиоуправления была впервые применена еще на немецких ракетах «А-4», чтобы снизить рассеивание при полете к цели[81 - На ракетах «А-4/V-2» использовалась система боковой радиокоррекции «Гавайя-Виктория» («Гавайя» – наземный передатчик, «Виктория» – бортовое приемное устройство). Система имела малую помехоустойчивость и с ее помощью было трудно перенацелить ракету, поэтому от нее быстро отказались, заменив более совершенной отечественного производства.]. Сотрудники НИИ-885 освоили ее во время испытаний на полигоне Капустин Яр и после модернизации использовали для боковой радиокоррекции траекторий «Р-1» и «Р-2». Для ракеты «Р-5» одной радиокоррекции оказалось недостаточно, требовалось управлять еще и дальностью – ведь точность попадания снижалась с повышением расстояния полета. Новая система должна была решать очень важную задачу – выдавать команду на выключение двигателя в тот момент полета, после которого боеголовка, летя по инерции, с гарантией попадет в цель. Исследования показали, что для этого достаточно знать два параметра: радиальную скорость ракеты и истинное расстояние до нее. Соответственно, требовалось четыре прибора: два приемо-передатчика на земле и два ответчика на борту ракеты. Система была испытана во время запусков ракет «Р-2Р»[82 - «Р-2Р» – модификация баллистической ракеты «Р-2», созданная для отработки системы радиоуправления дальностью ракеты «Р-5». Запуски «Р-2Р» проводились в рамках серии испытаний разных вариантов «Р-2» с 21 октября по 20 декабря 1950 года.]и «Р-5». При этом аппаратура радиоуправления находилась в 50 км от старта – в поселке Черный Яр. Оказалось, что факел двигателя оказывает сильное влияние на прохождение волн метрового диапазона, в котором работало оборудование радиоуправления. Чтобы добиться внятных результатов, потребовалась перенести наземные пункты в сторону – так, чтобы линия визирования и ось ракеты находились под углом друг к другу. Проблему решили, но к тому времени ОКБ-1 переориентировалось на модификацию «Р-5» – ракету «Р-5М». Дело в том, что 12 августа 1953 года в Семипалатинске было проведено успешное испытание первого отечественного термоядерного заряда РДС-6с мощностью 400 килотонн в тротиловом эквиваленте[83 - Индекс РДС в названии атомных бомб расшифровывается как «Россия делает сама». Практически все военные атомные разработки в СССР были начаты и доведены до эффектного результата в качестве ответа на аналогичные проекты в США. Так, первое термоядерное устройство Mike мощностью 10,4 мегатонн в тротиловом эквиваленте американские физики испытали в ноябре 1952 года.]. Советским атомщикам удалось создать заряд сравнительно небольших размеров и массой примерно в 1 т. Теперь предстояло под этот заряд построить баллистическую ракету. Постановление о разработке ракеты на основе «Р-5» для доставки термоядерного заряда на дальность 1200 км было выпущено 10 апреля 1954 года. Однако в бюро Королёва проект начали обдумывать еще в конце 1953 года. Требовалось разработать новую, более короткую, коническую головную часть, которая обеспечила бы требуемое для срабатывания автоматики подрыва снижение скорости встречи головной части с землей в два раза. Но это вело к уменьшению общей длины ракеты и изменению ее аэродинамических характеристик, что в свою очередь влекло за собой экспериментальные работы по определению нового облика «Р-5М». Наличие же ядерного заряда вызвало необходимость повышения надежности системы управления, чтобы ошибка или повреждение в одной цепи не приводили к общему отказу. Кроме того, требовалось упростить процесс подготовки ракеты к старту и сократить число обслуживающего персонала. Коллектив ОКБ-1 блестяще справился с задачей модернизации «Р-5». При этом был выдержан очень жесткий срок заводской отработки ракеты «Р-5М» – в течение 1954 года. Для повышения надежности ракеты «Р-5М» все цепи бортовой системы управления и радиокомплекса были дублированы: автомат стабилизации получил два независимых канала, рулевой агрегат имел не четыре, как у всех ранее разработанных ракет, а шесть рулевых машин. Были дублированы источники питания, а для управления дальностью полета применили трех-канальный интегратор. Дополнительно в состав бортового оборудования ввели новую систему аварийного подрыва – если из-за каких-либо отказов произойдет значительное отклонение ракеты от программной траектории, ее следует уничтожить в полете. Конструкторам удалось полностью автоматизировать процесс запуска, но предстартовая подготовка все еще отнимала много времени. Первоначально для приведения ракеты в состояние боевой готовности требовалось 30 часов. Позже за счет улучшения организации работы это время сократилось до 5–6 часов. У «Р-5М» оставался серьезный и неустранимый недостаток: жидкий кислород, используемый в качестве окислителя, не позволял хранить ракету в заправленном состоянии длительное время. Для пополнения постоянно выкипающего кислорода следовало строить мощные промышленные предприятия в районах базирования ракетных частей. Подпитывать ракету окислителем необходимо было и непосредственно перед пуском – для этого возводились громоздкие стартовые сооружения. И все же Советская армия получила оружие огромной разрушительной силы. За 10–12 минут ракета могла доставить боевой заряд, способный уничтожить население большого промышленного города, на расстояние свыше тысячи километров. 2 февраля 1956 года эту возможность подтвердил контрольный запуск «Р-5М», завершивший длительный цикл испытаний. Впервые в мире баллистическая ракета пронесла через космос атомную боеголовку. Преодолев положенные 1200 км, боеголовка дошла до земли в районе Аральских Каракумов. Сработал ударный взрыватель, и чудовищный взрыв открыл ракетно-ядерную эру в истории человечества. Мощность взрыва составила более 80 килотонн в тротиловом эквиваленте, что в четыре раза превысило мощность взрыва в Хиросиме. Никаких официальных публикаций по поводу этого исторического события не последовало. Разведка «потенциального противника» США в то время не имела средств обнаружения ракетных пусков, поэтому факт взрыва был отмечен как очередное наземное испытание атомного оружия. «Р-5М» приняли на вооружение под индексом 8К51. За ее создание главные конструкторы были удостоены звания Героя Социалистического Труда. На середину 1950-х годов «Р-5М» являлась лучшей баллистической ракетой. Поэтому не приходится удивляться, что на ее основе в ОКБ-1 быстро возникли проекты геофизических ракет, нацеленных на дальнейшее изучение верхних слоев атмосферы, околоземного пространства и аспектов космического полета по суборбитальной траектории до высоты порядка 500 км. С «Р-5М» Сергей Павлович Королёв связывал свои новые планы по запуску космонавта – и уже не подопытной собаки, а человека. Еще шли полным ходом испытания «Р-5М», а в июне 1955 года Сергей Королёв подготовил отчет о своей научной деятельности, в котором как бы мимоходом упомянул о реальности создания «ракетного корабля для полетов человека на большие высоты и для исследования межпланетного пространства». В сентябре главный конструктор выступил на Юбилейной сессии, посвященной 125-летию МВТУ имени Баумана[84 - За свою славную многолетнюю историю МВТУ имени М. Э. Баумана неоднократно реорганизовывался и переименовывался. В 1764–1830 годы он назывался Императорский воспитательный дом, в 1830–1868 годы – Московское ремесленное учебное заведение (МРУЗ), в 1868–1918 годы – Императорское Московское техническое училище (ИМТУ), в 1918–1930 годы – Московское высшее техническое училище (МВТУ), в 1930 году – Московское механико-машиностроительное училище, в 1930–1943 годы – Московский механико-машиностроительный институт им. Н. Э. Баумана (МММИ им. Н. Э. Баумана). В 1943–1989 годы – Московское высшее техническое училище им. Н. Э. Баумана (МВТУ им. Н. Э. Баумана), с 1989 года – Московский государственный технический университет им. Н. Э. Баумана (МГТУ им. Н. Э. Баумана).]. Его доклад назывался «К вопросу о применении ракет для исследования высоких слоев атмосферы и полетов в надатмосферном пространстве». В докладе Королёв подвел определенный итог работам по геофизическим ракетам, а главное – впервые в столь большой аудитории было заявлено о возможности полета «автоматически управляемой ракеты – летающей лаборатории с экспериментатором для производства наблюдений на высотах порядка 100 км». При этом рассматривался как вертикальный полет, так и полет по пологой траектории для перевозки пассажиров. В заключение своего выступления Сергей Павлович обратился с призывом, «чтобы советский человек первым совершил полет на ракете». Несмотря на секретность, доклад Королёва вызвал резонанс. Молодые ученые из ГНИИИ авиационной медицины Абрам Генин, Александр Серяпин и Евгений Юганов даже написали заявление с просьбой доверить им полет в ракете. Дальше – больше. Двадцатого апреля 1956 года состоялось совещание Междуведомственной комиссии для координации работ по исследованию верхних слоев атмосферы при президенте Академии наук СССР под председательством Анатолия Аркадьевича Благонравова[85 - Благонравов, Анатолий Аркадьевич (1894–1975) – советский ученый в области механики (баллистики). В 1916 году окончил Петроградский политехнический институт, в том же году – Михайловское артиллерийское училище, в 1924 году – Высшую артиллерийскую школу и в 1929 году – Военно-техническую академию. С 1953 года – директор Института машиноведения АН СССР. В 1957–1963 годы – академик-секретарь Отделения технических наук АН СССР. С конца 1940-х годов А. А. Благонравов вел научно-организационную работу по исследованию верхних слоев атмосферы при помощи ракет, с 1963 года – председатель Комиссии по исследованию и использованию космического пространства Академии наук. Генерал лейтенант артиллерии и действительный член Академии наук с 1943 года.] и Леонида Ивановича Седова[86 - Седов, Леонид Иванович (1907–1999) – советский ученый в области механики. В 1924 году поступил на педагогический факультет Ростовского университета. В 1926 году перевелся на физико-математический факультет МГУ, который окончил в 1930 году. Научную деятельность начал в 1931 году в теоретической группе ЦАГИ. В 1937 году защитил диссертацию на соискание ученой степени доктора физико-математических наук по теме «Теория плоских движений идеальной жидкости». Действительный член Академии наук СССР с 1953 года. Л. И. Седов был главным редактором журнала «Космические исследования», заместителем главного редактора журнала «Доклады АН СССР», членом редколлегии журнала «Прикладная математика и механика». Многие из руководителей советской космической программы, в силу закрытости проводимой работы, оставались неизвестными широкой публике, из-за этого часто выезжавший на международные конференции Л. И. Седов стал известен на Западе как «отец спутника». Почти четверть века Седов стоял у руководства Международной астронавтической федерации (1959–1961 годы – президент, 1957–1959 и 1961–1980 годы – вице-президент).], на котором выступили с докладами Владимир Яздовский («К проблеме полета человека в верхние слои атмосферы») и Михаил Тихонравов («О перспективах полета человека в верхние слои атмосферы»). Это были выступления теоретического плана, но уже тогда в докладе Яздовского прозвучала мысль о необходимости приземления пилота с помощью индивидуального парашюта, а не внутри спускаемого аппарата. В свою очередь Тихонравов считал наиболее перспективными суборбитальные полеты по пологой траектории, поскольку в этом случае перегрузки будут меньше, а время пребывания в невесомости больше. По итогам совещания комиссия рекомендовала начать подготовку к полету человека в специальных ракетах на высоту 100 км. В том же апреле Королёв составил отдельную записку, озаглавленную «Ближайшие задачи по изучению космоса». В ней рассматривались варианты использования геофизической ракеты «Р-5А»[87 - «Р-5А» – геофизическая ракета, разработанная на основе баллистической ракеты «Р-5М», с высотой полета до 500 км. На ракете «Р-5А» были продолжены геофизические исследования на больших высотах, начатые ракетами «Р-1А» и «Р-2А». В головной части имелся специальный герметичный отсек для медико-биологических экспериментов с двумя клетками из плексигласа, что позволяло с помощью киносъемки вести наблюдения за поведением животных во время полета. Кроме того, с помощью «Р-5А» проводились эксперименты для обеспечения перспективных разработок ОКБ-1. Один из них имел прямое отношение к программе запуска межпланетного аппарата – необходимы были средства, позволяющие зафиксировать его местоположение в момент приближения к Луне. Для этой цели была предложена так называемая «натриевая комета» – на соответствующей высоте с помощью реакции разложения натрия создавалось облако, которое можно было наблюдать в телескоп. Такой эксперимент был проведен 19 сентября 1958 года; его результаты позволили сделать вывод о возможности использования «натриевой кометы» при пусках автоматических станций к Луне.] для обеспечения полета человека в баллистической капсуле и ракетоплане. Есть сведения, что в это время в ГНИИИ авиационной медицины начался первый отбор в отряд космонавтов: Яздовский и другие медики просматривали личные дела летчиков-испытателей, пытаясь выработать критерии, по каким можно будет отбирать будущих покорителей межпланетного пространства. Делалось это в секрете даже от начальства, поскольку Главнокомандующий ВВС Главный маршал авиации Павел Федорович Жигарев довольно пренебрежительно отзывался о деятельности группы Яздовского и не поощрял запуски «ракетных» собак. Однако ракете «Р-5» так и не суждено было стать пилотируемой – куда более перспективными оказались работы над ракетами, собранными по так называемой пакетной схеме. 1.9 Пакетная схема Собирать ракеты в пакет предложил Михаил Клавдиевич Тихонравов. Разочарованный тем, что его проект «ВР-190» («Победа») в НИИ-4 поменяли на «Ракетный зонд», конструктор, обладая полномочиями заместителя начальника института, организовал новый отдел, который должен был заниматься многоступенчатыми ракетами, соединенными не последовательно, а параллельно – в пакет. Идея пакета появилась не на пустом месте. Дело в том, что привычная схема последовательного расположения ступеней, несмотря на кажущуюся простоту, имела свои недостатки. Прежде всего не была решена задача запуска двигателя второй ступени во время полета. Теоретикам она казалась малосущественной, но практики долго не знали, как к ней подступиться. Второй важный момент – даже оценочный расчет показывал, что размеры ракеты, сделанной по последовательной схеме и при этом способной развить первую космическую скорость, будут поистине титаническими: придется строить огромную монтажную башню, да и сама ракета от увеличения длины не станет прочнее и надежнее. Пытаясь решить эту проблему, Тихонравов обратился к трудам Константина Эдуардовича Циолковского, которого безмерно уважал, и в работе «Наибольшая скорость ракеты» (1935) нашел описание «эскадры ракет»[88 - Идея «эскадры ракет» пришла в голову К. Э. Циолковскому «15 декабря 1934 г. после 6 ч вечера» – перспективы, связанные с практической реализацией этой идеи, показались ему столь поразительными, что ученый запомнил не только день, но и час своего озарения и решительно пересмотрел спрогнозированные им ранее сроки осуществления космических путешествий с сотен на десятки лет.]. Интерпретация идеи, предложенная Тихонравовым, состояла в том, чтобы запускаемые одновременно ракеты, имеющие, по Циолковскому, только гидравлические связи, снабдить дополнительно механическими связями, объединив в один «пакет». В такой схеме запуск двигателей всех ракет осуществляется одномоментно на старте, топливо к ним подается сначала от одной ракеты, которая после опустошения отваливается, затем от другой и так далее. «Пакет» ракет не имеет ограничений по дальности полета – то есть сначала задаешь дальность, а потом проектируешь под нее «пакет». Однако в то время не существовало теории оптимального выбора основных конструктивно-баллистических параметров таких сложных агрегатов – именно ее и предстояло создать новому отделу, учрежденному Тихонравовым. В 1947 году электронно-вычислительных машин в распоряжении ракетчиков еще не было, и все необходимые расчеты приходилось выполнять вручную, на арифмометрах. Тем не менее к концу года был выпущен предварительный отчет по теории составных ракет, включая анализ пакетных схем. Тихонравов внимательно следил за работой отдела. Результаты ему так понравились, что он решил доложить их на ученом совете НИИ-4. Оригинальную идею встретили настороженно. Критики тут же уцепились за плохую аэродинамику соединения ракет, за уязвимость механических соединений. Но Тихонравов верил в осуществимость проекта и 14 июля 1948 года в Академии артиллерийских наук прочитал расширенный доклад «Пути осуществления больших дальностей стрельбы ракетами». Выступление вызвало бурю негодования – мало кто из специалистов поверил в практическую возможность достижения дальностей свыше 1000 км с помощью баллистических ракет. Поэтому сообщение Тихонравова о том, что «пакет» способен достичь любых дальностей и даже вывести на орбиту искусственный спутник Земли, взбудоражило зал. По иронии судьбы среди яростных критиков были и те, кто стали впоследствии видными учеными в области ракетной динамики и космонавтики. Революционный доклад чуть было не стал катастрофой для научной карьеры Михаила Тихонравова. Отдел тут же расформировали как «занимающийся неактуальными проблемами». Самого Тихонравова сняли с должности заместителя директора института, низведя до научного консультанта. Тогда в его судьбу решил вмешаться Сергей Павлович Королёв. В декабре 1949 года он выдал НИИ-4 официальный заказ на выполнение работы по теме «Исследование возможностей и целесообразности создания составных ракет дальнего действия типа «пакет». В записке была прямо сформулирована цель исследования – «сравнение возможностей достижения больших дальностей (порядка 10 000 км) с помощью одиночных и составных (последовательных и по типу «пакет») ракет дальнего действия с целью выбора рационального направления работ в области дальнобойных ракет». Тихонравову после получения заказа не только вернули тему, но и позволили сформировать большую группу для научно-исследовательской работы. В марте 1950 года он сделал новый доклад – «Ракетные пакеты и перспективы их развития». Тогда прозвучало, что по техническому заданию Королёва группой был рассмотрен двухступенчатый пакет из трех больших баллистических ракет и доказано, что такой пакет может не только доставить тяжелую боевую часть на любую дальность, но и вывести на орбиту спутник, масса которого может оказаться достаточной для полета на нем человека. Доклад был выслушан внимательно, но в последовавшей дискуссии по-прежнему преобладали саркастические выступления. Работы по изучению различных проблем создания составных ракет продолжались в группе до 1953 года. Результаты исследований регулярно высылались в бюро Королёва. Сергею Павловичу особенно нравилась схема простейшего пакета, и он, видя, что группа Тихонравова «зашивается», заказал оптимизацию этой схемы в Отделении прикладной математики имени Стеклова[89 - Отделение прикладной математики Математического института имени М.В.Стеклова Академии наук СССР было создано академиком М. В. Келдышем в 1953 году. Основное содержание работ Отделения составляли принципиально новые математические задачи, связанные с полетом искусственных спутников Земли и межпланетных станций к Луне, Марсу и Венере. В 1963 году на базе Отделения был создан Институт прикладной математики Академии наук СССР.]. В начале 1950-х годов группой Тихонравова были подготовлены и представлены в правительство СССР два письма, в которых аргументировано излагались перспективы применения составных межконтинентальных ракет. Эти письма сыграли определенную роль в принятии постановления правительства о создании ракет нового типа. Иосиф Сталин подписал такое постановление незадолго до своей смерти – 13 февраля 1953 года. Постановлением была задана тема «Т-1» – «Теоретические и экспериментальные исследования по созданию двухступенчатой баллистической ракеты с дальностью полета 7000–8000 км». Цель исследований – разработка эскизного проекта ракеты дальнего действия массой до 170 т с отделяющейся головной частью массой 3 т. Позднее, в октябре 1953 года, проектное задание было изменено: масса головной части увеличена до 5,5 т при сохранении дальности полета. Последнее решение приняли под влиянием неофициальной информации о техническом облике термоядерных зарядов нового поколения, которую предоставил один из идеологов данного направления – будущий академик Андрей Дмитриевич Сахаров. Позднее выяснилось, что масса такого заряда может быть многократно уменьшена. Однако двигатели для ракеты уже разрабатывались, и «запас» по тяге, который они давали, впоследствии сыграл решающую роль в реализации космических планов. 1.10 Великолепная «семерка» С принятием на вооружение «Р-2» положение Сергея Павловича Королёва в качестве главного конструктора баллистических ракет сильно укрепилось. По инстанциям прошло представление его на Сталинскую премию. Хотя эти премии из-за смерти Сталина в том году не присуждались, Совет главных конструкторов не оставили без наград, выделив им дополнительные вакансии членов-корреспондентов Академии наук СССР. В декабре 1953 года в ОКБ-1 был подготовлен проект постановления о создании баллистической ракеты большой дальности «7Р» (позже – «Р-7»). Уже в его тексте предлагалось применить ракету «7Р» для запусков искусственных спутников Земли и космических аппаратов к другим планетам. В январе 1954 года прошли совещания главных конструкторов, на которых были сформулированы технические требования к «7Р», согласованы основные тактико-технические характеристики, этапы конструирования и испытаний. Наконец 20 мая 1954 года было принято Постановление ЦК КПСС и Совета министров СССР № 956-4080; о разработке, изготовлении и испытаниях межконтинентальной ракеты «Р-7» (8К71). Начался этап эскизного проектирования. При этом сотрудники ОКБ-1 рассмотрели более полусотни вариантов компоновки «пакета». В конечном итоге остановились не на самом оптимальном, но позволявшем использовать многие существовавшие технологические наработки. «Пакет» ракеты «Р-7» состоял из пяти блоков (фактически – одноступенчатых ракет): центрального блока «А» и четырех симметрично окружавших его конических боковых блоков «Б», «В», «Г» и «Д»[90 - В специальной и исторической литературе можно встретить и другой порядок именования блоков ракетного «пакета»: боковые блоки – «А», «Б», «В», «Г», центральный – «Д». Иногда центральный блок обозначают еще и буквой «Ц». Однако общепринятой считается порядок, приведенный в этой книге.]. Двигатели всех блоков запускались на старте одновременно. После опустошения топливных баков боковые блоки отделялись (первая ступень), а центральный блок (вторая ступень) продолжал полет. При этом внутренняя компоновка блоков была подобна компоновке ракеты «Р-5», что значительно упрощало работу конструкторам и технологам. Новизну для них представляли лишь узлы связей блоков и магистралей перекачки топлива. Основные компоненты топлива располагались в нижнем (горючее) и верхнем (окислитель) баках каждого блока. Вспомогательные компоненты (жидкий азот для наддува баков и перекись водорода для привода турбонасосного агрегата) размещались в торовых баках непосредственно над рамой двигателя. Главный недостаток такой схемы – частичное опустошение блока «А» до момента отделения. Получалось, что потом центральной ракете придется тащить к цели бесполезный груз. Но все искупала общая мощность, развиваемая «пакетом». Это был даже не шаг, а настоящий прыжок в ракетостроении. Разумеется, в ходе эскизного проектирования пришлось определиться с двигателями. За их создание взялось Опытно-конструкторское бюро № 456 (ОКБ-456), разместившееся на базе авиазавода в подмосковном городе Химки[91 - Сегодня на базе ОКБ-456 в Химках функционирует ОАО «НПО Энергомаш имени академика В. П. Глушко» – российское предприятие, являющееся ведущим разработчиком и производителем жидкостных ракетных двигателей.] и возглавляемое Валентином Петровичем Глушко. Крупнейший специалист по реактивному двигателестроению Валентин Глушко увлекался вопросами космонавтики с юности, а карьеру конструктора начал в ленинградской Газодинамической лаборатории[92 - Ленинградская Газодинамическая лаборатория (ГДЛ) – научно-исследовательская и опытно-конструкторская лаборатория, деятельность которой была посвящена разработке ракетных снарядов на бездымном порохе и жидкостных ракетных двигателей. В конце 1933 года вошла в состав РНИИ. Сегодня на территории стендовой базы ГДЛ (Иоанновский равелин Петропавловской крепости) находится Музей космонавтики и ракетной техники.]. В 1933 году часть сотрудников ГДЛ переехала в Москву, войдя в состав Реактивного научно-исследовательского института. Через пять лет Глушко был арестован по сфабрикованному обвинению во «вредительстве», работал в «шараге» – конструкторской группе 4-го Спецотдела НКВД при Тушинском авиамоторостроительном заводе. В августе 1944 года был досрочно освобожден, а еще через несколько месяцев направлен в Германию – изучать немецкий опыт создания баллистических ракет «А-4» («V-2»). Первой задачей бюро Глушко после войны стало конструирование двигателей РД-100, в точности воспроизводящих двигатели «Овен», созданные Вальтером Тилем для «А-4». Разумеется, сначала предстояло развернуть производственную базу – заброшенный завод в Химках был восстановлен и переоборудован под новые задачи. Понимая, что воспроизведением немецкого опыта работа не ограничится, Глушко подошел к делу с размахом. На территории завода были созданы научно-исследовательская лаборатория, комплекс стендового оборудования и испытательная станция. Первый колышек под строительство будущей станции был забит в сентябре 1947 года в непосредственной близости от ОКБ – на относительно высоком откосе оврага, в излучине речки Химки. Больших перепадов высот, необходимых для свободного горения факела, здесь найти не удалось, поэтому Глушко предложил конструкцию наклонного (под 45°) стенда. Строительство велось быстрыми темпами, и к маю 1948 года монтаж стенда и кабины управления был завершен. Двадцать четвертого мая 1948 года на стенде состоялся успешный «прожиг» двигателя РД-100, что, безусловно, является историческим событием для отечественного ракетостроения. Валентин Глушко плотно работал с немецкими специалистами, однако среди них было мало двигателистов и с какого-то момента они уже не могли помочь в решении тех или иных принципиальных конструкторских вопросов. Сотрудникам ОКБ-456 пришлось самостоятельно создавать теоретическую и практическую базу для движения вперед. Силами бюро была сконструирована экспериментальная камера сгорания КС-50 (неофициально ее прозвали «Лилипутом»), способная работать не только на спирте с кислородом, но и на других компонентах топлива, вплоть до фторсодержащих окислителей и таких экзотических горючих, как суспензия гидрида бериллия. В свою очередь КС-50 стала «сердцем» экспериментального ракетного двигателя ЭД-140, для испытаний которой в 1949 году был построен специальный стенд. Когда пришло время выбрать компоненты топлива для межконтинентальной ракеты «Р-7», Глушко оказался перед трудным выбором. Увеличение размеров спиртового двигателя уже не давало требуемого эффекта – это показали работы над двигателем РД-101 для ракеты «Р-2» и двигателем РД-103М для ракеты «Р-5М». Было ясно, что от спирта в качестве горючего в любом случае придется отказаться, перейдя на керосин, который куда более калориен и при этом столь же хорошо освоен промышленностью. Но при таком переходе возникали серьезные трудности: температура продуктов его сгорания в кислороде почти на тысячу градусов выше, чем у водных растворов спирта, в то время как охлаждающие свойства намного хуже. А именно горючим приходится охлаждать стенки камеры сгорания, если в качестве второго компонента – окислителя – используется быстро испаряющийся кислород. Задача охлаждения осложнялась еще тем, что для обеспечения оптимальных характеристик керосинового двигателя необходимо поднять давление газов в камере по крайней мере в два раза по сравнению с достигнутым на спиртовых двигателях. Все эти трудности можно было преодолеть оригинальными конструкторскими решениями, но принципиально не решался один вопрос – ракета с жидким кислородом была плохой в военном отношении. Как уже упоминалось, использование кислорода в качестве окислителя не позволяло хранить крупногабаритную ракету в заправленном состоянии, что резко снижало ее боеготовность. Еще в 1940-х годах немцы установили, что потери жидкого кислорода в промежутке между его производством и использованием для запуска ракет «А-4» достигают 50 %! По результатам эксплуатации «Р-5М» в войсковых частях были подтверждены эти неутешительные данные: применение существующих вариантов базирования данных комплексов становится особенно затруднительным именно в случае осложнения международной обстановки, способного привести к вооруженному конфликту. «Р-5М» не могла находиться в заправленном состоянии больше тридцати суток из-за нехватки запаса жидкого кислорода в ракетных частях. Поэтому для пополнения потерь на испарение из баков требовалось либо располагать караванами из термостатированных автоцистерн для перевозки жидкого кислорода с заводов к месту дислокации ракет, либо иметь такие заводы в районах базирования ракетных частей, что лишало комплекс подвижности и делало его уязвимым для диверсантов и самолетов противника. Зная эти недостатки жидкого кислорода, Валентин Глушко предложил заменить его азотной кислотой. Она является сильнейшим окислителем – легковоспламеняющиеся вещества самопроизвольно загораются при попадании на них капель азотной кислоты. Однако Сергей Королёв, привыкший работать с кислородом еще в довоенные времена, был резко против, указывая, в частности, на высокую токсичность кислоты – ракеты с ней требовали особых мер обеспечения безопасности при эксплуатации. Точку в первом серьезном споре главных конструкторов поставили расчеты: азотная кислота в качестве окислителя не могла обеспечить требуемую межконтинентальную дальность при заданных габаритах ракеты. Работы над заменой спирта керосином Глушко начал еще весной 1948 года, когда по заданию правительства пытался создать большой кислородно-керосиновый двигатель РД-110 на основе немецкого опыта. Простая замена горючего не помогла – уже первые огневые испытания отдельных агрегатов выявили множество проблем, присущих «немецкой» конструкции со сферической камерой. К примеру, обнаружились высокочастотные колебания давления, приводящие к стремительному разрушению конструкции. Увеличение размеров камеры сгорания и давления внутри нее только способствовали развитию колебаний. Негативную оценку результатам испытаний дал и немецкий конструктор Вернер Баум, работавший в ОКБ-456. Тогда стало ясно: чтобы построить работоспособный кислородно-керосиновый двигатель большой тяги, нужно отказаться от однокамерного варианта и перейти на несколько камер сгорания. Кроме обеспечения устойчивости процесса горения, многокамерная схема позволяла уменьшить высоту и массу двигателя. Революционная идея о переходе на многокамерные двигатели была принята далеко не сразу. Команда Глушко проводила опыты с однокамерным экспериментальным двигателем ЭД-140, находя новые конструкторские решения, и, когда начались первые проработки межконтинентальной ракеты «пакетной» схемы, взялась за проектирование двигателя РД-105 для первой ступени этой ракеты и РД-106 – для второй. Оба двигателя были однокамерными, и Глушко полагал, что за несколько лет сумеет обойти трудности, в том числе и связанные с высокочастотными колебаниями. Но осенью 1953 года задание было изменено, вес боеголовки увеличен до 5,5 т, и двигатели РД-105 и РД-106 в одночасье оказались не нужны. Осознав, что новый груз однокамерным двигателям не «потянуть», Валентин Глушко решил сгруппировать четыре аналогичные камеры сгорания (каждая – увеличенный в масштабе модифицированный вариант ЭД-140) в единый блок с общим турбонасосным агрегатом. При этом высота двигателя уменьшилась, снизилась масса как хвостового отсека, так и всей ракеты в целом. Основные принципы модульной конструкции позволяли начать серийное производство двигателя без значительных изменений в существующем производстве. Концепция многокамерности на многие годы стала «коньком» ОКБ-456, и первые серийные двигатели в этом классе – РД-107 и РД-108 – создавались для ракеты «Р-7». В целом они были идентичны друг другу, но имели и существенное отличие. РД-107 стояли на боковых блоках, а РД-108 – на центральном блоке «А». Пакетная схема подразумевала отделение первой ступени (то есть «боковушек») после выработки ими топлива. Но полет на этом не заканчивался, двигатель центрального блока продолжал работать, общее время горения достигало 250 секунд, то есть в два раза больше, чем могли выдержать графитовые рули, применявшиеся для управления ранее. Кроме того, этим рулям был присущ серьезный недостаток: они создавали потери тяги двигательной установки за счет торможения газового потока на рулях. Нужно было искать принципиально новые подходы. Тогда Василий Павлович Мишин[93 - Мишин, Василий Павлович (1917–2001) – советский инженер, конструктор ракетно-космической техники. В 1932 году поступил в фабрично-заводское училище при ЦАГИ, получил рабочую квалификацию слесаря. Параллельно учился на вечерних подготовительных курсах при ВТУЗе, и в 1935 году поступил в Московский авиационный институт. После окончания МАИ в 1941 году был направлен в авиационное бюро В. Ф. Болховитинова, где в военные годы принимал участие в создании систем вооружения самолетов, в том числе и первого ракетного истребителя «БИ-1». В 1946 году занял должность первого заместителя главного конструктора С. П. Королёва, в этом качестве работал до января 1966 года. После смерти С. П. Королёва возглавил ОКБ-1, реорганизованное в Центральное конструкторское бюро экспериментального машиностроения (ЦКБЭМ), и руководил им до 1974 года. Действительный член Академии наук с 1966 года.], заместитель Сергея Павловича Королёва предложил использовать в качестве управляющих органов не графитовые рули, а дополнительные поворотные рулевые камеры относительно малой тяги (1/6 от тяги основных). При этом центральный РД-108 отличался от боковых РД-107 наличием четырех (вместо двух) рулевых камер и иной конструкцией дросселя. Валентин Глушко, понимая, какой объем работ по основным двигателям «обрушивается» на его коллектив, просил не отвлекать ОКБ-456 камерами малой тяги. Поэтому проектирование рулевых двигателей поручили отделу № 12 ОКБ-1 под руководством Михаила Васильевича Мельникова[94 - Мельников, Михаил Васильевич (1919–1996) – советский инженер, конструктор ракетных двигателей. В 1937 году поступил в Московский авиационный институт, окончить который смог только в 1945 году, в 1940–1945 годы работал на опытном заводе 293 (бюро В. Ф. Болховитинова), участвовал в создании ракетных самолетов «БИ». В 1945 году М. В. Мельников в должности начальника лаборатории переведен в НИИ-1. С 1956 года – заместитель главного конструктора С. П. Королёва по двигателям. Был одним из ведущих специалистов по проектированию жидкостных и электрических ракетных двигательных установок.]. Таким образом, вся двигательная установка «Р-7» должна была состоять из тридцати двух камер сгорания: двадцати основных и двенадцати рулевых. Отработка вариантов установки проводилась на масштабных прототипах двигателей. К примеру, для испытаний одновременного воспламенения топлива в 32 камерах рядом с основным огневым стендом был создан отдельный стенд, на котором в общей сложности провели несколько тысяч «прожигов» двигателей без выходов на главный режим. Параллельно шла отработка камеры сгорания на основном режиме. В итоге инженерами ОКБ-456 был приобретен опыт для создания основного агрегата кислородно-керосинового двигателя – камеры с давлением газа 60 атмосфер и более. Возросший объем работ потребовал расширения стендовой базы. Сергей Королёв предложил перенести испытания двигателей на стенд филиала № 2 НИИ-88 в Загорске. Однако Валентин Глушко воспротивился этому и обратился в вышестоящие инстанции с письмом, в котором резонно указывал, что в случае переноса базы в Загорск возникнут объективные трудности в доведении двигателей «Р-7»: не имея возможности испытывать их на месте, инженеры будут вынуждены «путешествовать» между городами, а только на автомашине путь между Химками и Загорском занимает четыре часа. Аргументы Валентина Петровича возымели действие – стенд для испытаний двигателей постановили строить в Химках. Двадцать четвертого июля 1954 года эскизный проект ракеты «Р-7» был завершен. В августе, после рассмотрения и одобрения проекта Межведомственной экспертной комиссией, смежные организации получили технические задания. К созданию летных образцов ракеты подключались более двухсот научно-исследовательских институтов, конструкторских бюро и заводов. Но еще до завершения эскизного проектирования, в марте того же года, правительство Советского Союза распорядилось начать поиск места под новый ракетный полигон. В то время никто и предположить не мог, что этому полигону предстоит стать первым космодромом планеты Земля. Глава 2 Космодром 2.1 Новый полигон Испытательные запуски первых советских баллистических ракет проводились на полигоне Капустин Яр в Астраханской области. Однако для многоступенчатой ракеты с дальностью полета 8000 км этот полигон не годился. Дело в том, что трасса полета проходила в восточном направлении – фактически через всю азиатскую часть Советского Союза. Нужно было отчуждать новые районы для падения отработавших ступеней ракет, создать новые измерительные пункты (ИПы), выбрать подходящие районы для пунктов радиоуправления полетом ракеты (РУПы), оборудовать боевые поля падения головной части в восточных районах страны (на Камчатке и в акваториях Тихого океана). Также требовалось разработать систему транспортирования отличавшихся значительными размерами блоков ракеты «Р-7» к месту старта. Семнадцатого марта 1954 года военным и промышленности было предписано к 1 января 1955 года произвести выбор полигона для испытаний ракеты «Р-7», а 20 мая вышло соответствующее постановление Совета министров о проведении рекогносцировочных работ в подходящих районах. Для выбора места полигона была образована Государственная комиссия во главе с гвардии генерал-лейтенантом артиллерии Василием Ивановичем Вознюком, начальником полигона Капустин Яр. Комиссия руководствовалась рядом соображений: расстояние между местом старта и местом падения головной части должно быть не менее 7000 км; трассе полета не следует проходить над населенными пунктами; малонаселенные районы по ней могут быть без проблем отчуждены в пользу Министерства обороны; поблизости от полигона должен находиться водоем, способный в изобилии обеспечить водой людей и технику. В ходе обсуждения комиссия остановилась на трех основных вариантах. Первый вариант – Марийская автономная республика, где во время войны образовались огромные вырубки леса, были проложены хорошие транспортные пути, но при том там имелось сравнительно редкое население. Во время детальной проработки варианта обнаружили, что он не удовлетворяет требованиям к трассе полета. Тогда взоры комиссии обратились ко второму варианту – западному побережью Каспийского моря (район Астраханской области и Дагестана). Однако выяснилось, что если новый полигон построить там, то некуда будет «приткнуть» пункты радиоуправления полетом. Из-за многочисленных гор и холмов радиолуч наземной станции управления не достигнет борта ракеты на отдельных участках ее полета и прежде всего на наиболее важном – в первую минуту после ее отрыва от стартового стола. Третий вариант – Казахстан, район от Аральского моря до города Кзыл-Орды – оказался наиболее пригоден для привязки полигона. Там нашлось три подходящих места для строительства: берег Аральского моря, железнодорожные разъезды Байхожа и Тюра-Там. Комиссия выбрала последнее – участок с координатами 45,6° северной широты и 63,3° восточной долготы. Достоинством этого места было то, что через поселок Тюра-Там (в переводе с тюркского «священная могила») проходила железная дорога Москва – Ташкент, а рядом текла река Сырдарья. Еще один плюс – в 30 км от станции располагался небольшой карьер, к которому вела готовая узкоколейная ветка. При окончательном выборе члены комиссии учли и пожелания Сергея Павловича Королёва – в это время он всерьез собирался использовать тяжелые ракеты для запуска искусственных спутников Земли. Из рассмотренных вариантов полигон в Казахстане был самым южным. Следовательно, с большей эффективностью можно было использовать центробежную силу вращения Земли[95 - Вес тела – величина, обусловленная не только гравитационным притяжением земли, но и центростремительным отталкиванием вследствие ее вращения. Эта же сила удерживает воду в ведерке, если вращать его на веревке. Тело на экваторе движется по окружность максимального радиуса. На полюсе этот радиус равен нулю и, таким образом, центробежная сила равна нулю. Если оценить величину изменения веса, то на экваторе она составляет 1/290 часть веса на полюсе. То есть если тело весит на экваторе 1 кг, то на полюсе его вес составит 1,005 кг – на 5 г больше.], а это немаловажно именно при выведении аппаратов в космическое пространство. Не следует забывать, что от географической широты зависит и «доступность» орбит – более низкие по широте орбиты «закрыты» для простого баллистического запуска, и только на экваторе можно запускать космические аппараты на орбиту любого наклонения без дополнительного маневра[96 - Это не имеет значения в быту, но в ракетно-космических технологиях каждый грамм на вес золота.]. Постановление Совета министров «О новом полигоне для Министерства обороны СССР» № 292-181сс было подписано 12 февраля 1955 года, однако сроки, определенные правительством, оказались столь жесткие, что еще за месяц до этого на станцию Тюра-Там прибыл первый взвод военных строителей. Его возглавлял старший лейтенант Игорь Николаевич Денежкин. Он представлял 130-е Управление инженерных работ подполковника Георгия Максимовича Шубникова[97 - Шубников Георгий Максимович (1903–1965) – советский военачальник, инженер-строитель, генерал-майор. В 1920 году начал трудовую деятельность простым рабочим, а затем десятником, одновременно занимался в вечернем архитектурно-строительном техникуме, который окончил в 1925 году. В 1930–1932 годах учился в Ленинградском институте гражданского и промышленного строительства; по окончании был призван в ряды Красной армии и направлен на строительство Забайкальского укрепленного района. По завершении оборонительных работ в 1937 году был демобилизован и до июня 1941 года работал главным инженером Ессентукского управления «Водоканал». В годы Великой Отечественной войны Г. М. Шубников занимал различные командные должности. В 1946–1949 годы был начальником 23-го Управления Военно-полевого строительства. Часть, которой командовал Г. М. Шубников, восстанавливала, стоящие и поныне мосты через канал в Берлине, через реки Одер (в городах Франкфурт, Кострин), Вислу, Шпрее, пролив Штральзунд и другие; строила ряд административных и культурных зданий в Берлине (здание театра и советское посольство), памятники погибшим советским воинам, в том числе и знаменитый памятник Воину-освободителю в Трептов-парке. В 1955 году был назначен начальником строительства полигона Тюра-Там.], входящее в Главное управление специального строительства Министерства обороны (ГУСС МО). Задачей взвода Денежкина являлась подготовка железнодорожных путей для приема вагонов со стройматериалами и спецпоезда из Капустина Яра. Хотя Тюра-Там подходил ракетчикам по всем параметрам, освоить эту необжитую местность было очень трудно. Летом температура воздуха поднималась здесь до +45 °C в тени, начинались пыльные бури. Зимой стояли морозы до -36 °C, дули сильные ветры, скорость которых достигала 40 м/с. Ближайшие районные центры – Казалинск (северо-западнее) и Джусалы (юго-восточнее), расположенные на берегах Сырдарьи, – отстоят более чем на сотню километров. Сам поселок Тюра-Там производил унылое впечатление: небольшое здание вокзала, водонапорная башня, два двухэтажных домика железнодорожников, несколько мазанок и юрт. А вокруг – ровная пустынная степь, такыры[98 - Такыр – форма рельефа, образующаяся при высыхании неглубоких озер. Такыры характерны, в первую очередь, для полупустынь и пустынь.], солончаки, пески, колючки. Первые строители разместились в палатках. Весь январь и февраль бушевали метели. Морозы и снежные заносы сильно затруднили работу, но «денежкинцы» шаг за шагом упорно продвигались вперед. А еще они сделали большое дело – за два зимних месяца выкололи из Сырдарьи несколько тысяч кубометров льда и засыпали его толстым слоем опилок. В знойное лето 1955 года ледник спас от гниения сотни тонн мяса и других продуктов, предотвратив желудочные болезни у тысяч людей. В мае на полигон, получивший условное название «Тайга», прибыл начальник строительства Георгий Шубников. С этого момента темпы и масштаб стройки нарастали непрерывно. К станции Тюра-Там подходил эшелон за эшелоном. Бывало, что в день этот маленький разъезд принимал до тысячи вагонов. Над грунтовыми дорогами стояла сплошная стена мелкой пыли, из-за чего машины двигались в солнечный день с зажженными фарами. Механизмы не выдерживали, но люди в тяжелейших условиях трудились практически круглосуточно. Бытовые условия были ужасны. Старший офицерский состав жил в вагонах, младший селился в землянках. Питались консервами и сухарями. Очищенной воды не хватало для питья и приготовления пищи, не говоря уже о санитарных нуждах. Навесы, под которыми военнослужащие обедали, плохо защищали от палящего солнца, туч пыли и вездесущих насекомых. Песок скрипел на зубах, набивался в рот. Несмотря на бытовой ад, работа кипела вовсю. Строители прокладывали «бетонку», рыли котлованы, возводили цементный завод… Организационная структура полигона была определена 2 июня 1955 года директивой Генерального штаба Вооруженных сил СССР[99 - Дата 2 июня Приказом министра обороны СССР № 00105 от 3 августа 1960 года установлена как годовой праздник полигона НИИП-5 МО (Тюра-Там).]. Тогда же будущему космодрому присвоили официальное название – 5-й Научно-исследовательский полигон Министерства обороны (НИИП-5 МО). Первым его начальником был назначен боевой ракетчик генерал-лейтенант Алексей Иванович Нестеренко[100 - А. И. Нестеренко был назначен первым начальником ракетного полигона Тюра-Там, а первым начальником «космодрома Байконур» стал в 1958 году генерал-майор Константин Васильевич Герчик.]. Главным инженером проекта строительных конструкций стал Алексей Алексеевич Ниточкин[101 - Позднее инженер-полковник А. А. Ниточкин был главным инженером объекта «Ангара», известного ныне как космодром Плесецк.]. В том году штат полигона составил 1900 военнослужащих и 664 вольнонаемных работников. Однако реально на первом этапе строительства было задействовано свыше 20 тыс. солдат и офицеров. А 20 июля на полигоне Тюра-Там началось возведение «объекта 135» – стартового комплекса ракеты «Р-7», который сами строители называли «площадкой номер один» или «стадионом». Через несколько лет его назвали «Гагаринским стартом». 2.2 Площадка номер один Проектирование наземного стартового комплекса шло параллельно разработке ракеты. Оно было поручено московскому Государственному специальному конструкторскому бюро (ГСКБ) «Спецмаш», которое возглавлял Владимир Павлович Бармин, в годы войны работавший на серийном производстве реактивных «катюш», а затем участвовавший в освоении немецкой ракетной техники. Все стартовые сооружения полигона Капустин Яр строила команда Бармина. Первоначально принципы конструирования стартового комплекса не отличались от тех, которые были хорошо изучены и опробованы «Спецмашем» при создании «Р-1», «Р-2» и «Р-5», – во всех случаях ракету привозили к стартовому столу в горизонтальном положении и с помощью стрелы (или мачты) установщика водружали вертикально на опоры-стабилизаторы. Однако «Р-7» была больше, тяжелее и сложнее, чем любая из предыдущих ракет. Поэтому Сергей Королёв и Владимир Бармин пришли к выводу, что нужно привозить каждый из пяти блоков на старт поодиночке, а затем присоединять «боковушки» к центральному блоку в двух точках касания – внизу (на уровне крепления двигателей) и вверху. Причем так, чтобы их тяги передавались на вторую ступень в нижней части. Соответственно, под каждый блок предполагалось соорудить отдельный стартовый стол. Когда проект комплекса обсуждался на Совете главных конструкторов, против такого варианта резко выступил конструктор автономных систем управления Николай Алексеевич Пилюгин. Дело в том, что если тяга двигателей будет меняться вразнобой, то сравнительно большое расстояние между «боковушками» создаст значительный опрокидывающий момент. При совмещении такого момента с сильным порывом ветра система управления в принципе не может обеспечить устойчивость движения ракеты в процессе старта. Как-то отрегулировать потенциальную несинхронность не мог и двигателист Валентин Глушко – он заявил, что поставляет одиночные двигатели, а решать проблемы их синхронизации не входит в его задачу. Предложение удерживать ракету за хвост второй ступени до полного набора тяги всеми двигателями тоже было отклонено. Тогда Пилюгин потребовал оградить ракету от действия ветра. Королёв с ним никогда не спорил, передоверив это «удовольствие» своему первому заместителю Василию Павловичу Мишину. Поскольку проектанты ОКБ-1 ничего путного в ответ на замечания Пилюгина не придумали, пришлось просить Бармина возвести вокруг стартового комплекса высокую стену. Бармин опешил и в резкой форме отказался даже обсуждать такое «китайское» решение вопроса. Тут подоспела новая проблема – проектанты в очередной раз перекомпоновали ракету: центральный блок теперь подвешивался на «боковушки», а не на пусковое устройство. Ни у кого не осталось сомнений, что единственный выход – горизонтальная сборка в Монтажно-испытательном корпусе с последующей транспортировкой ракеты по рельсам на стартовый стол. В ноябре 1954 года состоялось заседание Совета главных конструкторов, на котором было принято окончательное решение об изменении схемы запуска «Р-7». Но что предложить взамен? Конструирование стартового комплекса «пакетной» ракеты не имело аналога, соответственно, у проектировщиков не было хотя бы экспериментального опыта по многим обсуждаемым позициям. Рассматривая различные варианты крепления и установки ракеты на старте, конструкторы предложили создать в зоне стыковки первой и второй ступеней ракеты дополнительный силовой пояс, что позволяло удерживать ракету во «взвешенном» состоянии. «Р-7» должна была не стоять на стартовом столе, а висеть над ним. Силовой пояс представлял собой самозапирающийся под собственным весом ракеты сегментно-круговой захват. Через четыре несущих стрелы нагрузка передается на поворотный круг диаметром 18 м, который позволяет нацеливать ракету по азимуту. На этой же поворотной части устанавливаются две кабель-мачты для подвода наземных коммуникаций. При запуске, после того как тяга двигателей превысит массу «Р-7», верхний пояс освобождается от нагрузки, которую создает ракета, захват размыкается, и под действием противовесов стрелы быстро отходят в разные стороны. Новая схема позволяла кардинально решить проблему воздействия ветра – задний срез ракеты просто опустили ниже нулевого уровня сооружения, в специальный проем на глубину 6,3 м. К комплексу были подведены пути с перроном для агрегата, обеспечивающего подпитку ракеты жидким кислородом. Кроме того, потребовалось создать принципиально новый транспортер-установщик «Р-7» на базе железнодорожных платформ лафетного типа. С помощью гидравлических домкратов он поднимал ракету в вертикальное положение с заглублением хвоста в нишу стола и «передавал» ее в силовые элементы стартовых захватов. На расстоянии 200 и 350 м от стартового сооружения были размещены два подземных сооружения командного пункта с оборудованием, обеспечивающим дистанционную заправку ракеты компонентами топлива и газами, а также подготовку и пуск ракеты. В отдельных сооружениях находились компрессорная станция, дизельная электростанция и хранилище воды. Для обслуживания нижней части «Р-7» и стыковки с ней заправочных коммуникаций разработали «выдвижную кабину» с поворотными и выдвигающимися площадками, размещаемую в стартовом сооружении под ракетой. На время пуска части кабины «прятались» в специальную нишу. Реализация этого необычайного замысла напрямую зависела от строителей полигона Тюра-Там, которым предстояло возвести основу сооружения – монолитный железобетонный остов, состоящий из фундаментной плиты, четырех пилонов для опоры и наклонного отражательного лотка. А строители в это время столкнулись с почти непреодолимыми трудностями. После того как геологи изучили окрестности будущего полигона, структуру грунта и дали добро на возведение стартового комплекса в определенном месте, в Тюра-Там приехали «маскировщики» Генштаба и потребовали перенести старт на несколько километров с возвышенности в низину, мотивируя это тем, что в ином случае «площадка номер один» станет идеальной целью для вражеской артиллерии. Требование «маскировщиков» выполнили, однако повторную геологоразведку делать не стали – сочли, что структура грунта везде примерно одинаковая. Это оказалось роковой ошибкой. Если в старом месте на все 50 м глубины котлована залегал песок, то в новом с глубины 7 м пошли твердые «ломовые» глины, которые не брал ни один ковш. Стройка сразу застопорилась – из 1,3 млн кубометров грунта за целое лето 1955 года сняли всего 0,3 млн. Попробовали рыхлить отбойными молотками – бесполезно. Катастрофически не хватало техники: на котлован было выделено по пять скреперов[102 - Скрепер – землеройно-транспортная машина, предназначенная для послойного копания грунтов, транспортирования и отсыпки их в земляные сооружения слоями заданной толщины. Кроме того, при движении по насыпи скреперы своими колесами уплотняют отсыпанные слои грунта, благодаря чему сокращается потребность в специальных уплотняющих машинах.]и самосвалов, по два бульдозера и экскаватора – явно недостаточно. Только зимой, после бомбардировки вышестоящего начальства письмами и жалобами, удалось выбить 20 экскаваторов, 30 скреперов, 25 бульдозеров и 60 самосвалов «МАЗ-250». Для ускорения работ был внедрен линейно-уступчатый метод отрывки в три уровня, а плотный грунт дробили с помощью направленных взрывов. Все эти меры помогли повысить ежесуточную выработку грунта до 15–18 тыс. кубов. Казалось, самое страшное позади, но весной случилась новая беда: из скважины, пробуренной рядом с котлованом на его проектную глубину, хлынула вода. Работы были остановлены. Руководители стройки опасались, что наткнулись на водоносный слой. Если продолжить копать, вода прорвется и затопит котлован за несколько часов. Взрывные работы были строжайшим образом запрещены – с прорабов даже взяли подписку, пригрозив им уголовной ответственностью. Началось обсуждение. Идея перенести стартовую площадку в другое место поддержки не нашла – в таком случае все сроки сдачи полигона и испытаний ракеты «Р-7» сдвигались на полтора-два года. Предложение остановиться на достигнутом уровне и начать бетонирование тоже не приняли – уменьшение глубины котлована относительно проектной на 13 м приведет к ухудшению отвода факела, что может вызвать опрокидывание ракеты. В конце концов ученые предложили снижать уровень грунтовых вод с помощью иглофильтров и насосов. Промышленность обещала поставить необходимое оборудование в течение года, что опять же срывало план строительства. И тогда Георгий Шубников решился на отчаянно смелый шаг. Воспользовавшись опытом метростроевцев, он приказал «отжать» грунтовые воды мощными взрывами. По прикидкам, «отжатая» вода заполнит грунт не менее чем через десять суток. За это время можно успеть снять оставшиеся слои, заложить дренаж и начать бетонирование. Во избежание конфликта с руководством шпуры[103 - Шпур – искусственное цилиндрическое углубление в горной породе или бетоне диаметром до 75 мм и глубиной до 5 м. Создаются и применяются для размещения зарядов при взрывных работах, для установки крепи, нагнетания воды или цемента в окружающий массив горных пород.] бурили по ночам, а днем маскировали их. Затем заложили по 150 кг взрывчатки. Первый взрыв прогремел 7 апреля, второй – 12-го. Расчет оправдался – вода ушла. Чтобы ускорить процесс бетонирования, строители сделали наездной мост по размерам фундаментной плиты и прямо с него самосвалами сваливали бетон в опалубку. По традиционной схеме «самосвал-бадья-кран-укладка» бетонирование заняло бы месяц, а с наездным мостом хватило недели. В июне 1956 года, когда половина работ по бетонированию уже была выполнена, грянула еще одна напасть. Главный инженер Алексей Ниточник наконец-то получил данные геологоразведки и пришел в ужас: несущая способность грунтов под фундаментом оказалась на 20 % меньше проектной – грунт мог осесть, «разорвав» трещинами все сооружение. Нужно было либо уменьшить вес комплекса, либо увеличить площадь опоры. Строители пошли сразу по обоим направлениям: площадь была расширена за счет фундаментов башенных кранов, а вес снизили, сделав пилоны комплекса пустотелыми по принципу пчелиных сот. В сентябре 1956 года, точно в соответствии с графиком, строительные работы на «площадке номер один» были завершены – теперь туда пришли монтажники из Минмонтажспецстроя. Военные строители сделали невозможное – не только уложились в предписанные сроки, обойдя природные препятствия, но и создали циклопическое сооружение, гарантированный срок эксплуатации которого исчисляется не десятками, а сотнями лет. Высочайшую оценку этой работе дал Сергей Павлович Королёв. «Я был уверен, что строители не подведут, – сказал он. – Но я не предполагал, что они в короткий срок смогут построить так много и так хорошо.» 2.3 Сборка «семерки» Ударно трудиться приходилось не только строителям, ведь компоновка ракеты «Р-7» постоянно менялась и дорабатывалась. Немецкий опыт пригодился лишь отчасти – конструкторы относились к блокам «семерки» как к ракете «Р-5» и проектировали соответствующую оснастку, однако при сборке пяти таких ракет в «пакет» появлялись новые факторы, которые в принципе не пытались когда-либо решать ракетчики Пенемюнде. Советским специалистам приходилось двигаться вперед буквально на ощупь, действуя методом проб и ошибок – почти как в 1930-е годы. Приведу несколько примеров. После изменения схемы старта встала проблема одновременного размыкания элементов силовой конструкции стартового комплекса. Решить ее можно было только одним способом – обеспечив плавный подъем ракеты в строго заданном направлении. Это потребовало от разработчиков двигателей организовать трехступенчатый процесс их запуска с созданием «предварительной», «промежуточной ступени» и «главной» тяги. В свою очередь регулирование тяги можно организовать только за счет турбонасосного агрегата, качающего компоненты топлива (керосин и жидкий кислород) в многочисленные камеры сгорания. Двигателистам пришлось с нуля спроектировать и испытать перенастраиваемый привод регулятора расхода перекиси водорода, на продуктах разложения которого и работал турбонасосный агрегат. Кстати, сам этот агрегат развивал мощность, на порядок превышающую мощность своего предшественника, использованного в немецкой ракете «А-4», но при этом весил лишь в полтора раза больше. Интересно, что отработанный турбиной агрегата парогаз выбрасывался через патрубок за борт ракеты, создавая тем самым дополнительную тягу. Регулирование тяги жидкостных двигателей было настолько новым делом, что потребовалось проверить идею в действии. Для этого создали специальную ракету «Р-М5РД» с регулируемыми двигателями 5МРД. Для экспериментов изготовили две опытные партии этих ракет по пять экземпляров каждая. Запуски состоялись в июле – августе 1956 года. Помимо системы регулирования тяги проверялись приборы нормальной и боковой стабилизации центра масс, новые гироскопы и датчики колебаний топлива. Кроме того, «на натуре» были опробованы головные части с теплоизоляционной обмазкой на основе карбида кремния ТО-2 (на трех ракетах) и с покрытием из асботекстолита (на двух ракетах). Все десять пусков оказались удачными, подтвердив правильность выбранных решений. Совершенно новым для конструкторов был и процесс разделения ступеней. Как сделать, чтобы «боковушки» отходили от центрального блока «А» вовремя и не повредили его? При этом система должна быть проста и надежна, то есть основываться не на радиоэлектронике, которая может отказать при вибраций, а на элементарных физических принципах. И опять предложенное решение отличалось изяществом – боковые блоки отходили от ракеты самостоятельно. Реализовано это было за счет остаточного давления наддува в кислородных баках. «Боковушки» соединялись с блоком «А» в двух местах – в районе удерживающего силового пояса стартового сооружения находились четыре башмака, в пазы которых входили оголовки блоков, а внизу, на стыке топливных и двигательных отсеков, имелись поперечные стяжки. В полете при разделении ступеней маршевые двигатели «боковушек» переводились в режим пониженной тяги, управляющие камеры выключались, а нижние поперечные стяжки «пакета» разрывались пирозарядами. Тяга двигателей «боковушек» создавала момент относительно опорных узлов. «Пакет» раскрывался, блок «А» уходит вперед. Как только сферические оголовки боковых блоков выходили из башмаков и освобождали имеющиеся там электроконтакты, вскрывались сопловые крышки в верхней части «боковушек», и остаточное давление наддува баков кислорода стравливалось, создавая при этом небольшую тягу. Боковые блоки разворачивались и сами собой отводились на безопасное расстояние. Долгое время оставался открытым вопрос о том, смогут ли эффективно работать все ракетные блоки, собранные в «пакет». Для ответа на него в Загорске был построен прототип Монтажно-испытательного корпуса, а на крутом пятидесятиметровом склоне над рекой Кунья возвели «испытательную станцию № 102» – новый многоуровневый стенд, рассчитанный на испытание мощных двигателей. Строительство стенда и вспомогательных сооружений началось в апреле 1954 года, а в эксплуатацию его приняли 16 июля 1956 года. Работы собственно с «Р-7» были начаты в Монтажно-испытательном корпусе Загорского филиала. В конце весны 1956 года группа инженеров отработала операции по сборке блоков в «пакет». Первый «прожиг» бокового блока на стенде был выполнен 1 сентября, а успешный запуск многокамерного двигателя на полное ресурсное время состоялся 24 сентября. Всего в 1956 году было проведено четыре испытания «боковушек» и одно – центрального блока, после чего началась подготовка к запуску «пакета». Все «прожиги» посещал Сергей Павлович Королёв, внимательно следивший за их ходом. Наконец 30 марта 1957 года состоялся запуск так называемого летного варианта «пакета» с полной заправкой. О важности этого события свидетельствует тот факт, что на нем присутствовал секретарь ЦК КПСС Леонид Ильич Брежнев. Только после того как «пакет» отработал без замечаний, конструкторы смогли вздохнуть с облегчением. Ракета «Р-7» была допущена к полетам. 2.4 Поселок Ленинский-Байконур Все работы по доведению «семерки» до летного образца проходили в авральном режиме. Это было связано с тем, что положение на международной политической арене обострялось, «холодная война» грозила перерасти в горячую фазу, и советскому руководству позарез нужно было получить «оружие сдерживания» – межконтинентальную ракету с термоядерной боеголовкой, способную долететь до территории США. Конструкторы, инженеры и простые солдаты, занятые в строительстве полигона Тюра-Там, действительно верили, что только «Р-7» сможет остановить заокеанского «агрессора» и предотвратить Третью мировую войну. Поэтому ощущали себя «фронтовиками» и спокойно мирились с бытовыми неудобствами во имя обороны своей страны. Кстати, половина строителей Тюра-Тама были ветеранами Великой Отечественной и не понаслышке знали, что такое сражаться за Родину. Надежды, возлагавшиеся на «семерку», еще больше возросли после удачных комплексных испытаний ракеты «Р-5М» с атомной боеголовкой, проведенных 2 февраля 1956 года. Буквально черед неделю сборочный цех Опытного завода ОКБ-1 в Подлипках посетил Президиум ЦК КПСС во главе с Никитой Сергеевичем Хрущевым. Главный конструктор Королёв устроил целую экскурсию, которая произвела сильное впечатление на руководителей Коммунистической партии – на фоне немецкой «А-4» новая советская ракета выглядела настоящим монстром. Проявил интерес к «Р-7» и один из учителей Королёва – знаменитый авиаконструктор Андрей Николаевич Туполев. Он обошел макет ракеты несколько раз, потрогал тоненькие стержни нижних связей блоков, сел рядом на стул и, поразмыслив, сказал: «Она не полетит». Однако Хрущев «загорелся» новым делом и обещал всестороннюю поддержку. Стартовое сооружение «Р-7», получившее название «Тюльпан», собрали на Ленинградском металлическом заводе (ЛМЗ). Туда же привезли полномасштабный макет ракеты, который позволял отработать технологию установки и заправки баков, а главное – имитацию подъема ракеты с требуемым нарастанием скорости посредством заводских подъемных кранов. По итогам этих испытаний комплекс разобрали и в августе 1956 года частями перевезли в Тюра-Там. В декабре туда же прибыла «примерочная» ракета 8К71СН. Хотя члены Совета главных конструкторов периодически посещали НИИП-5, в полном составе они приехали туда только в феврале 1957 года, незадолго до отправки первого летного образца «Р-7». К тому времени полигон изрядно вырос. В 2,5 км от стартового комплекса строители возвели здание Монтажно-испытательного корпуса (МИК, «техническая позиция», «площадка номер два»). В огромном зале (размеры МИКа составляют примерно 100x60 м) было проложено несколько рядов железнодорожных путей. На них устанавливались специальные тележки, на которые укладывались боковые и центральные блоки ракет. В зал свободно въезжал маневровый тепловоз (мотовоз), который доставлял специальные вагоны с отдельными ракетными блоками. Разгрузку осуществлял уникальный мостовой кран с микроподачей. Чтобы создать все это сооружение, коллективу «Спецмаша» пришлось разработать большое количество всевозможных технических приспособлений, ложементов, различных подъемников, передвижных средств обслуживания, а также стапеля-пакетировщики. Поблизости от МИКа был построен гостиничный поселок для гражданских специалистов. Основной массе приходилось жить в дощатых бараках, а вот главных конструкторов предполагалось разместить с комфортом – в четырех небольших домиках. При этом домик № 1 был оставлен свободным на случай появления председателя Государственной комиссии или маршала артиллерии Митрофана Ивановича Неделина[104 - Неделин, Митрофан Иванович (1902–1960) – советский военачальник. На военной службе с 1920 года. Службу в Красной армии начал рядовым, затем стал командиром отделения и политбойцом. Участвовал в боях во время советско-польской войны 1920 года, при ликвидации Тамбовского восстания 1920–1921 годов и басмачества в Средней Азии в 1922 году. С 1923 года служил в артиллерийских частях, с 1925 года – политрук батареи, затем – полковой школы. В 1929–1937 годах – командир батареи и дивизиона, начальник штаба артиллерии полка. В 1937–1939 годах участвовал в национально-революционной войне в Испании, по возвращении – командир артиллерийского полка, затем – начальник артиллерии стрелковой дивизии. В апреле 1941 года назначен командиром 4-й артиллерийской истребительно-противотанковой бригады. С этой бригадой в начале Великой Отечественной войны вступил в боевые действия с противником на Южном фронте. С лета 1943 года и до конца войны командовал артиллерией Юго-Западного (3-го Украинского) фронта. После войны М.И. Неделин занимал командные должности, в 19521953 годы – заместитель военного министра СССР по вооружению. С 1955 года – заместитель министра обороны СССР по специальному вооружению и ракетной технике, с декабря 1959 года – Главнокомандующий Ракетных войск стратегического назначения в звании главного маршала артиллерии. М. И. Неделин активно занимался созданием и организацией нового вида вооруженных сил. Под его руководством были разработаны и испытаны первые образцы межконтинентальных баллистических ракет..], курировавшего ракетчиков по линии Министерства обороны. Кстати, из-за Неделина этот домик долгое время называли «маршальским». В 20 км южнее «площадки номер два» был заложен новый город – «площадка номер десять». Его планировали расположить на обоих берегах Сырдарьи, однако мощный весенний разлив заставил отказаться от этой затеи. Кроме того, постройка моста потребовала бы больших затрат. Строительство города развернулось лишь на правом берегу под защитой специально сооруженной дамбы. Пятого мая 1955 года состоялась закладка первого здания. Город проектировали под 5000 человек постоянного персонала, однако очень быстро численность населения на порядок превысила расчетную. Дома строили из дерева, в сборно-щитовом исполнении. К приезду Совета главных конструкторов на «десятой площадке» было всего четыре каменных здания: метеостанция, кинофотолаборатория, станция ВЧ-связи[105 - ВЧ-связь – система «закрытой» телефонной связи, использующая высокие частоты (ВЧ); была организована в 1930-е годы как оперативная связь органов ОГПУ. Впоследствии ею стали пользоваться также высшие гражданские и военные чины. Во время Великой Отечественной войны ВЧ-связь служила для соединения с командованием фронтов и армий. Аппараты ВЧ были установлены в высших партийных и правительственных учреждениях Москвы, республиканских, краевых и областных центров СССР, в также в советских посольствах.] и двухэтажная казарма, через которую прошли сотни офицеров и которую из-за вечной перенаселенности называли «Казанским вокзалом»[106 - Название взято не с «потолка» – пассажирские поезда из Москвы в Тюра-Там уходили с Казанского вокзала.]. Первый жилой дом из кирпича на двадцать четыре квартиры был сдан только во второй половине 1957 года. Тем не менее семейные офицеры привозили на полигон жен и детей. Уже 24 августа 1956 года открылась первая школа на улице, названной, естественно, Школьная. Утром 1 сентября сто тридцать шесть мальчиков и девочек сели за парты, а вечером их места заняли сто восемьдесят взрослых, стремящихся получить среднее образование. Первым директором этой школы № 30 стала Тамара Леонидовна Орлова. Город, вырастающий на «площадке номер десять», долгое время не имел названия. Сами жители говорили, что живут в поселке Заря, но 29 января 1958 года Указом Президиума Верховного Совета Казахской СССР ему было присвоено официальное название – Ленинский. Сегодня мы знаем его под именем Байконур[107 - Название Байконур (с казахского Байкрцыр – плодородная земля) городу было присвоено официально 20 декабря 1995 года Указом Президента Республики Казахстан. Вместе с комплексом космодрома Байконур арендован Россией на период до 2050 года. Население – около 60 тыс. человек.]. Настоящий (или первый) Байконур находится в 280 км на северо-восток от Тюра-Тама, в отрогах хребта Алатау, и в то время он состоял из двух десятков саманных домиков. Необходимость обозначить Ленинский появилась после того, как на орбиту отправились космические корабли. Поскольку полигон оставался засекреченным объектом, а для регистрации приоритетов и рекордов нужно указывать место старта, было решено сделать публичным «левое» название. Почему такой чести удостоился именно Байконур? Оказывается, по чистой случайности – баллистики провели вертикальную линию вниз от того участка траектории полета «Р-7», где отделяется первая ступень, и ближайшим населенным пунктом оказался этот маленький поселок. С целью окончательно запутать «потенциального противника» в настоящем Байконуре – на высотке, под которой располагался естественный котлован, – был возведен ложный старт с большой деревянной ракетой. Его даже круглосуточно охраняли, но только для того, чтобы местные жители не растащили обманное сооружение… на дрова. 2.5 Первая межконтинентальная Первая летная ракета «Р-7» прибыла на техническую позицию полигона 3 марта 1957 года. Она имела заводской номер 5Л, а в разговорах называлась «номер пять» или просто «пятая»[108 - Первый летный образец «Р-7» был пятым ракетным «пакетом», собранным на Опытном заводе ОКБ-1 в Подлипках. Предыдущие четыре изделия были использованы при стендовых испытаниях, включая два прожига «пакета» на стенде ИС-102 в Загорске 20 февраля и 30 марта 1957 года.]. Сразу началась разгрузка и укладка блоков на монтажные тележки. Однако 8 марта прибыла большая группа конструкторов с длинным перечнем доработок, которые следовало внести в летную ракету по результатам стендовых испытаний. Самыми трудоемкими оказались работы по теплозащите хвостового отсека. Во время «прожига» в Загорске обшивка из алюминиевого сплава хвостовой конструкции прогорела во многих местах. Из-за этого были повреждены огнем потенциометры обратной связи рулевых камер и кабели. Предстояло обшить хвостовой отсек тонкими стальными листами, а внутри все уязвимые элементы обмотать асбестовой защитой. После доработок начался «чистовой» цикл испытаний отдельных блоков «пакета» в МИКе. А 5 мая мотовоз потащил платформу с ракетой «Р-7» (МБР 8К71 № 5Л, с головной частью – М1-5)[109 - МБР – межконтинентальная баллистическая ракета, 8К71 – индекс ГРАУ (индекс заказывающего управления Министерства обороны: 8К – баллистические ракеты, 8К7 – ракеты ОКБ-1), № 5Л – заводской номер ракеты, М1-5 – полигонный номер ракеты с присоединенной головной частью.] на старт. Пункт управления предстартовыми операциями и запуском ракеты находился в подземном («командном») бункере, построенном в 200 м от старта и на глубине около 8 м. По сравнению с «однокомнатным» бункером Капустина Яра новый пункт представлялся просторной пятикомнатной квартирой. В самом большом из пяти помещений, снабженном двумя морскими перископами, вдоль стен были установлены пульты телеметрического контроля боковых и центрального блоков, контроля и зарядки интеграторов[110 - Интегратор – датчик «кажущейся» скорости, чувствительный прибор типа маятника, регистрирующий ускорение и интегрирующий значения ускорения в значения скорости. Интеграторы являются важнейшими элементами инерциальных систем управления.], пожаротушения, а позже и пульт спутника. Всё здесь было ново и заметно отличалось от примитивных систем управления первых ракет – кроме стартового ключа, позаимствованного еще у немецких пультов «А-4». Однажды конструкторы решили избавиться от этого устаревшего артефакта, и Николай Пилюгин даже дал указание своим сотрудникам разработать вместо стартового ключа специальный включатель. Но это предложение вдруг встретило резкое сопротивление военных. Оказалось, что армейские «пультисты» привыкли начинать операции запуска с команды «Ключ на старт!». Пришлось конструкторам уступить любителям традиций и четких команд. Второе большое помещение предназначалось для членов Государственной комиссии по испытаниям «Р-7»[111 - Государственная комиссия по проведению летных испытаний межконтинентальной ракеты «Р-7» была утверждена Советом Министров 31 августа 1956 года в составе председателя Военно-промышленной комиссии В. М. Рябикова (председатель), главного маршала артиллерии М. И. Неделина (заместитель председателя), С. П. Королёва (технический руководитель), В. П. Бармина, В. П. Глушко, В. И. Кузнецова, А. Г. Мрыкина, Н. А. Пилюгина, М. С. Рязанского (заместители технического руководителя), С. М. Владимирского (заместитель председателя Госкомитета по радиоэлектронике), А. И. Нестеренко, Г. Н. Пашкова, И. Т. Пересыпкина (министр связи СССР) и Г. Р. Ударова (заместитель председателя Госкомитета оборонной техники).], почетных гостей и главных конструкторов. Оно также имело два перископа. В остальных помещениях бункера размещалась контрольная аппаратура систем телеметрии, управления заправкой, стартовыми механизмами, вспомогательные комнаты для связистов и охраны. Таким образом, видеть запуск из бункера могли только четыре человека. Остальным, чтобы полюбоваться полетом ракеты, если она ушла со старта, надо было успеть выскочить наружу. Для этого требовалось одолеть шестьдесят крутых ступенек и пробежать по поверхности еще пять-семь метров. Целью испытательных запусков было не только проверить все системы «семерки» в полете, но и доставить габаритно-весовой макет боеголовки до специально организованного полигона Кура (поселок Ключи, Камчатка), находящегося на расстоянии 6314 км. Это было меньше проектной дальности, но в то время Советский Союз не располагал средствами наблюдения за движением ракеты в акватории Тихого океана. Кроме того, первые летные образцы были перегружены измерительным оборудованием (сами конструкторы называли их не летными, а «измерительными») и в принципе не могли выйти на дальность в 8000 км. Первая установка «Р-7» в стартовое сооружение происходила при большом скоплении «болельщиков». Все работники полигона понимали: начинается самый ответственный этап работы, который определит их судьбы на десятилетия вперед. Только к концу дня главный конструктор комплекса Владимир Павлович Бармин, руководивший лично всем процессом установки, доложил, что свою задачу на данном этапе выполнил. «Теперь испытывайте!» – сказал он. И начался длинный, по современным представлениям, цикл предстартовых испытаний. Только «чистое» время всех электрических тестов на стартовой позиции заняло 110 часов. По ночам старались не работать, но семь суток ушло на проверки с разбором всех замечаний, просмотром пленок, докладами и массой всяческих процедур. Для гарантии безопасности населенных пунктов, расположенных по трассе полета, на «Р-7» была установлена комбинированная система аварийного выключения двигателя. Если ракета начнет сильно вращаться относительно своего центра масс, то по достижении углов отклонения более семи градусов замыкаются аварийные контакты на гироприборах, которые выдают команды на последующее выключение двигателей. На случай плавного ухода ракеты с расчетной траектории по вине самих гироскопов были введены пункты оптических наблюдений и система выдачи аварийной команды по радио. Находясь в «створе» плоскости стрельбы, группа из трех опытных специалистов с помощью теодолита следила за поведением ракеты и по общему согласию передавала по телефону в бункер условный пароль, известный только им и двум руководителям пуска. Получив аварийный пароль в бункере, руководители должны были последовательно нажать две кнопки. Это служило командой отстоящему на 15 км пункту радиоуправления для посылки в эфир аварийного сигнала. Сигнал принимала всенаправленная антенна, установленная на центральном блоке «Р-7». Даже если в это время ракета завертится, сигнал будет принят. Пароль выбирал главный конструктор систем радиоуправления Михаил Сергеевич Рязанский. Им стало имя рыцаря из знаменитого романа Вальтера Скотта – «Айвенго». Четырнадцатого мая прошло плановое заседание Государственной комиссии под председательством Василия Михайловича Рябикова[112 - Рябиков, Василий Михайлович (1907–1974) – советский инженер, военачальник. Рабочую карьеру начал в 17 лет на ткацкой фабрике «Большевик», занимался активной общественной деятельностью. В конце 1920-х годов был направлен на учебу в Ленинградский технологический институт, затем был переведен в Механический институт. С 1933 года в Красной Армии. В 1937 году окончил Ленинградскую военно-морскую академию. Стал работать инженером-конструктором на заводе «Большевик». В 1939 году В. М. Рябиков был назначен заместителем народного комиссара вооружения и в следующем году стал 1-м заместителем. В 1951–1953 годах был начальником 3-го главного управления при Совете министров СССР, занимался созданием советских зенитных ракет, в 1953–1955 годах – заместитель министра среднего машиностроения СССР, в 1955–1957 годах – председатель Специального комитета при Совете министров СССР, затем заместитель председателя Комиссии Президиума Совета министров СССР по военно-промышленным вопросам. Был председателем Госкомиссии по испытаниям первой межконтинентальной ракеты и запуску первого искусственного спутника Земли. В 1958–1961 годах – заместитель предателя Совета министров РСФСР. В 1962–1965 годах – первый заместитель председателя Совета народного хозяйства СССР. С 1966 года – генерал-полковник инженерно-технической службы.]. Королёв доложил о готовности к запуску и еще раз перечислил основные задачи испытаний: отработка техники старта, проверка динамики управления полетом первой ступени, процесса разделения ступеней, эффективности системы радиоуправления, динамики полета второй ступени, процесса отделения головной части и движения головной части до соприкосновения с землей. Боковые блоки первой ступени должны проработать 104 секунды, а центральный блок – 285 секунд. Высота ракеты – 34,22 м, расчетная стартовая масса – 283 т. Вечером 15 мая 1957 года[113 - День запуска первой ракеты «Р-7» совпал с 15-й годовщиной первого полета ракетного самолета «БИ-1» – 15 мая 1942 года на аэродроме Кольцово под Свердловском. Многие участники тех исторических испытаний присутствовали и на первом запуске «Р-7». Всего за 15 лет был пройден путь от маленького самолета с миниатюрным однокамерным двигателем до межконтинентальной баллистической ракеты, способной выводить грузы в космос.], через десять дней после вывоза из МИКа, состоялся первый запуск ракеты «Р-7». Ракета ушла со старта нормально. Управляемый полет продолжался до 98-й секунды. Затем тяга двигателя бокового блока «Д» резко упала, и последний отделился от ракеты. Но пароль «Айвенго» не понадобился – из-за превышения отклонения углов от программных прошла команда аварийного выключения двигателей. Изделие упало на землю, пролетев всего 300 км. Той же ночью расшифровали данные телеметрии, поступившие с борта упавшей ракеты. Оказалось, что в момент старта в хвостовом отсеке блока «Д» начался пожар. Возможной его причиной назвали пробой в магистрали подачи керосина к рулевым камерам. Подобные инциденты случались и на ранних ракетах – например, на «Р-1». Тряска во время транспортировки «изделий» на полигон часто приводила к нарушению герметичности трубопроводов. В качестве меры по предотвращению повторения аварийной ситуации решили ужесточить контроль герметичности коммуникаций ракеты повышением давления воздуха при пневмоиспытаниях. Это сразу дало эффект при подготовке следующего «пакета» – было выявлено такое количество потенциальных источников пожара, что приходилось удивляться, почему на первой ракете загорелся только блок «Д». Второй запуск ракеты «Р-7» (№ 6Л, М1-6), назначенный на 10 июня, не состоялся. Сначала дважды прошел отказ по системе зажигания. Неисправность выявили те же телеметристы – почему-то не открылся главный кислородный клапан на боковом блоке «В». Решили, что клапан замерз, поэтому подогрели его прямо на заправленной ракете. Наконец зажигание сработало, двигатели вышли на предварительную ступень по тяге, но никак не хотели переходить на промежуточную. В результате сработала система аварийного выключения. Факел, бьющий из ракеты, мгновенно погас. Ракету пришлось снимать со старта. Тщательное изучение «пакета» в МИКе показало, что виноваты монтажники: клапан азотной продувки бортовой пневмогидросхемы центрального блока был поставлен «наоборот». Эта ошибка привела к тому, что продувка азотом не прекратилась перед запуском, как должно. Азот попал в кислородные полости камер сгорания основного и рулевых двигателей. Керосин не пожелал гореть в атмосфере кислорода с азотом, и поэтому двигатель никак не выходил на главный режим. По «горячим следам» была осмотрена следующая ракета, и там обнаружили точно такой же монтажный брак. Третья ракета «Р-7» (№ 7Л, M1-7) стартовала через месяц – 12 июля. Запуск закончился аварией. Его предыстория такова: в бункер Сергею Королёву доложили, что «минус» бортовой батареи находится на корпусе. Была объявлена тридцатиминутная задержка. Королёв, посовещавшись с другими конструкторами, посчитал, что это отказ датчика (такое уже случалось ранее), и принял решение пускать. В полете на прибор «ИР-ФИ» – интегратор по углу вращения – прошла ложная команда. «Р-7» начала вращаться вокруг продольной оси, превысив разрешенный допуск в 7°. Автоматика произвела аварийное выключение двигателей. На 33-й секунде «пакет» разрушился. Блоки упали примерно в 7 км от старта и с грохотом взорвались. Третий неудачный пуск Королёв переживал особенно тяжело, полагая, что уход ракеты «за бугор» целиком на его совести. «Преступники мы, целый поселок выбросили на ветер», – эти слова приписывают именно ему. И действительно, первый экземпляр «Р-7» стоил около 100 млн рублей, второй и третий – по 40 млн рублей[114 - Цена ракет, разумеется, не включает в себя стоимость полигона. В начале строительства его общая стоимость оценивалась в 500 миллионов рублей (в ценах 1955 года). С учетом денежных реформ и изменения покупательной способности рубля полигон Тюра-Там с одной стартовой площадкой обошелся в 5 миллиардов современных рублей.]. Три неудачи подряд поставили всю программу под угрозу срыва. У бюро Королёва имелись конкуренты, предлагавшие свои варианты стратегических межконтинентальных ракет[115 - Самым серьезным конкурентом С. П. Королёву был главный конструктор М. К. Янгель ОКБ-586, ушедший из НИИ-88 в 1954 году. Конкуренцию составлял и глава ОКБ-52 В. Н. Челомей. Оба они склонялись к конструированию баллистических ракет на высококипящих компонентах топлива, позволяющих длительное время хранить ракету в заправленном состоянии, что больше соответствовало требованиям военных.]. На полигоне состоялось весьма острое заседание Государственной комиссии. Представлявший заказчика маршал Неделин предложил прекратить испытания, отправить все доставленные на полигон ракеты обратно в Загорск и еще раз на стендах отработать каждую. Ему возразили Королёв и Пилюгин, мотивируя свой отказ выполнить требование маршала тем, что перевозка блоков приведет к непроизводительными затратами средств и времени. Но Глушко, выступивший вслед за ними, неожиданно для Королёва поддержал Неделина: «Я думаю, что Митрофан Иванович прав! Смысла продолжать испытания не вижу: сорок отработанных в ОКБ-456 двигателей погибли при испытаниях. Если дело пойдет так и дальше, мое производство этого просто не выдержит». Несмотря на спор конструкторов и угрозы заказчика, к запуску начали готовить новую «Р-7» (№ 8Л, M1-9). Двадцать первого августа 1957 года в середине дня состоялся запуск четвертой по счету «семерки». На этот раз ракетчикам сопутствовал успех – «Р-7» штатно отработала активный участок траектории. Головная часть отделилась вовремя и достигла полигона на Камчатке. Конструкторы торжествовали, однако в их бочку меда природа добавила свою ложку дегтя – на высоте порядка 10 км макет боеголовки разрушился от перегрева. На земле даже не удалось найти ее фрагментов. То же самое произошло со следующей ракетой (№ 9Л, M1-10), запущенной 7 сентября, – ракета доставила боеголовку, но та развалилась в плотных слоях атмосферы. Конструкторам стало ясно, что уносимой теплозащиты, которая была опробована на ракете «Р-5М», явно недостаточно – надо проконсультироваться с аэродинамиками и поменять форму головной части. Примечательно, что 27 августа, менее чем через неделю после первого удачного запуска «семерки», информационное агентство ТАСС опубликовало официальное сообщение о состоявшихся испытаниях межконтинентальной баллистической ракеты. Это был беспрецедентный случай – до сих пор информация подобного рода засекречивалась. Считается, таким образом Никита Хрущев намекнул американцам, что теперь силы уравнялись, и если западный альянс пошлет на Советский Союз армады бомбардировщиков с атомными зарядами на борту, то в ответ получит термоядерный удар по северной части США. Что касается остальной работы, то ее продолжали скрывать за плотной завесой государственной тайны. Полигонным военнослужащим и гражданским специалистам было категорически запрещено упоминать в личной переписке станцию Тюра-Там, Аральское море, Казахстан, писать о пустыне, верблюдах, сайгаках, скорпионах, змеях, черепахах и реке Сырдарье. Каждое письмо проверялось замполитом и офицером особого отдела. Обратный адрес тоже не мог выдать расположение полигона: в 1955 году использовался адрес «Москва-400», в конце 1956 года ввели новый – «Кзыл-Орда-50», позднее – «Ташкент-90». Однако все эти меры по сохранению «ракетных тайн» оказались лишними. Когда на НИИП-5 начались запуски «Р-7», американская разведка почти сразу установила его точное местоположение. Пятого августа 1957 года, выполняя задание под кодовым обозначением 4035, на поиски полигона вылетел самолет-разведчик «U-2», базирующийся в Пакистане. Аналитики ЦРУ разумно предположили, что полигон снабжается всем необходимым по железной дороге, поэтому часть маршрута разведчика пролегала над магистралью Москва – Ташкент. Специалисты из лаборатории аэрофотосъемки проявили полученные пленки и тщательно их изучили. Наконец на одной из фотографий они увидели странное сооружение, находящееся севернее железной дороги. Разведчик прошел не над ним, а на значительном удалении, поэтому снимки получились под углом и «смазались». Но местонахождение стартовой площадки уже было определено, оставалось привязать ее к географической карте. Аналитики воспользовались картами, изготовленными в 1939 году немецким Генштабом, и пришли к выводу, что полигон построен в непосредственной близости от станции Тюра-Там. Второй полет «U-2» в рамках нового задания 4058 состоялся 28 августа – сразу после победного сообщения ТАСС. Разведчик, оборудованный фотокомплектом А-2, доставил великолепные вертикальные снимки стартового комплекса. В течение пяти дней аналитики обрабатывали их, после чего построили миниатюрный макет, на котором были отражены все детали этого пускового комплекса. Вывод был однозначен – единственный комплекс с экспериментальной ракетой не представляет серьезной угрозы Соединенным Штатам Америки. Аналитики ошиблись. Через месяц произошло событие, которое по своему значению сравнили с бомбардировкой Пёрл-Харбора[116 - Седьмого декабря 1941 года японская авиация совершила нападение на базу Тихоокеанского флота США в Перл-Харборе, что послужило поводом для вступления Соединенных Штатов во Вторую мировую войну.]. На орбиту вышел первый искусственный спутник Земли. 2.6 Спутник О необходимости запуска искусственного спутника Земли много говорили основоположники теоретической космонавтики. Однако обосновывали они эту необходимость по-разному. Константин Эдуардович Циолковский предлагал запускать на круговую орбиту ракету с экипажем, чтобы сразу начать освоение космоса человеком. Немец Герман Оберт предлагал собрать из верхних ступеней ракет-носителей большую орбитальную станцию, которая решала бы задачи военной разведки, морской навигации и передачи радиосообщений. Кроме того, снабдив эту станцию большим зеркалом, можно было, по мнению Оберта, фокусировать солнечные лучи и направлять их в сторону Земли, воздействуя на климат или угрожая вражеским городам. Многие ученые и фантасты сходились во мнении, что искусственный спутник Земли будет использован прежде всего как перевалочная база для межпланетных кораблей, летящих к Луне, Марсу и Венере. И в самом деле – зачем кораблю тащить на орбиту всё топливо, необходимое для разгона, если он может подзаправиться от спутника? Тогда же придумали снабдить будущий спутник телескопом, чтобы астрономы получили возможность прямо с орбиты наблюдать за отдаленными космическими объектами, избавившись от искажений, вносимых атмосферой. Конец ознакомительного фрагмента. Текст предоставлен ООО «ЛитРес». Прочитайте эту книгу целиком, купив полную легальную версию (http://www.litres.ru/anton-pervushin/108-minut-izmenivshie-mir/) на ЛитРес. Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом. notes Примечания 1 Циолковский, Константин Эдуардович (1857–1935) – признанный основоположник теоретической космонавтики, ученый, мыслитель, писатель-фантаст. Родился в семье лесничего. После перенесенной в детстве скарлатины почти полностью потерял слух; глухота не позволила продолжать учебу в школе, и с 14 лет он занимался самостоятельно. С 16 до 19 лет жил в Москве, изучал физико-математические науки по циклу средней и высшей школы. В 1879 году экстерном сдал экзамены на звание учителя. К этому времени относятся первые научные исследования К. Э. Циолковского. Не зная об уже сделанных открытиях, написал работу «Теория газов», в которой изложил основы кинетической теории газов. Вторая его работа, «Механика животного организма», получила благоприятный отзыв И. М. Сеченова, и К. Э. Циолковский был принят в Русское физико-химическое общество. Основные работы К. Э. Циолковского после 1884 года были связаны с четырьмя большими проблемами: научным обоснованием цельнометаллического аэростата (дирижабля), обтекаемого аэроплана, поезда на воздушной подушке и ракеты для межпланетных путешествий. Теоретические исследования Циолковского показали возможность достижения космических скоростей. Он первым изучил вопрос о ракете – искусственном спутнике Земли и высказал идею создания околоземных станций. Циолковский выдвинул ряд идей, которые нашли применение в ракетостроении: газовые рули из графита для управления полетом ракеты; использование компонентов топлива для охлаждения стенок камеры сгорания и сопла двигателя; насосная система подачи компонентов топлива; оптимальные траектории спуска космического аппарата при возвращении из космоса. 2 Свои выкладки Исаак Ньютон изложил монографии «Математические начала натуральной философии» (лат.: Philosophiae Naturalis Principia Mathematica, 1687). Ньютон поставил следующий мысленный эксперимент. Представьте себе высочайшую гору, пик которой находится за пределами атмосферы. Вообразите пушку, установленную на самой ее вершине и стреляющую горизонтально. Чем мощнее заряд используется при выстреле, тем дальше от горы будет улетать ядро. Наконец при достижении некоторой мощности заряда ядро разовьет такую скорость, что не упадет на землю вообще, выйдя на орбиту – сила притяжения для него уравновесится центробежной силой. 3 И. Стержнев в монографии «Артиллерийские орудия кратного действия (1944–1948)» сравнивает две пушки: русскую серийную образца 1902 года и немецкую сверхдальнобойную пушку. При этом получается, что при увеличении заряда в 14,4 раза по сравнению с пушкой 1902 года сверхдальнобойная пушка дает прирост скорости снаряда не в 14,4 раза, а только в 2,7 раза. 4 Роман Жюля Верна о полете на Луну является первой частью дилогии, состоящей из двух романов: «С Земли на Луну прямым путем за 97 часов 20 минут» (фр.: De la Terre a la Lune Trajet Direct en 97 Heures 20 Minutes, 1865) и «Вокруг Луны» (фр.: Autour de la Lune, 1869). 5 Перегрузка – безразмерная величина. Но в популярной литературе в качестве единицы ее измерения используется g (же) – усредненное для Земли ускорение свободного падения (9,81 м/с ). Применяя эту единицу, легко видеть, насколько ускорение движущегося тела выше ускорения свободного падения. 6 Переносимость перегрузки напрямую зависит от времени ее действия. К примеру, перегрузку 4,5 g может переносить длительное время самый обыкновенный человек. Тренированный и здоровый человек способен выдержать перегрузку в 8 g, если она не будет длиться свыше пяти минут. Пилот самолета при катапультировании испытывает ударную перегрузку в 20–25 g, но длится она секунды. Спортсмены при экстремальных прыжках в воду выдерживают перегрузку в 90-100 g. Рекорд по перенесенной перегрузке принадлежит гонщику «Формулы-1» Дэвиду Перли, который при аварии в 1977 году испытал воздействие ударной перегрузки в 179,8 g и остался жив. 7 Ни один из проектов, которые мы можем найти в рукописях 1878 года, не подходил для земных условий, что К. Э. Циолковский прекрасно понимал. «Веретенообразная башня, висящая без опоры над планетой и не падающая благодаря центробежной силе» и «кольца, с помощью которых можно восходить на небеса и спускаться с них, а также отправляться в космическое путешествие» могли быть построены только на небольших планетах, лишенных атмосферы. 8 В статье «Свободное пространство», написанной в 1883 году, К. Э. Циолковский излагает способ движения в космической пустоте за счет силы реакции: «Меньшая из масс приобретает скорость, во столько раз большую скорости большой массы, во сколько раз масса большого тела больше массы меньшего тела». На этом принципе ученый предложил новую конструкцию движителя для космического корабля. Это пушка, снаряды которой создают силу отдачи. Меняя положение ствола пушки, можно лететь в любом направлении. 9 Федоров, Александр Петрович (1872-?) – русский изобретатель, потомственный дворянин, журналист. В 1896 году Федоров написал брошюру «Новый принцип воздухоплавания, исключающий атмосферу как опорную среду». Что подвигло его на это, доподлинно не известно. Став журналистом, популяризировал технические новинки, иногда писал об авиации, но ни разу не вспомнил о своем давнем изобретении, которое подтолкнуло К. Э. Циолковского к базовой идее осуществления космических полетов с помощью ракет на жидком топливе. 10 Формула Циолковского выглядит так: V = V ln (М /М ) = V ln (1 + М /M ), где V – конечная скорость летательного аппарата после выработки топлива, V – эффективная скорость истечения продуктов сгорания топлива из сопла, М – начальная масса летательного аппарата (полезная нагрузка + конструкция аппарата + топливо), М – конечная масса летательного аппарата (полезная нагрузка + конструкция), М – масса топлива. 11 Первой популярной публикацией о работах К. Э. Циолковского считается статья инженера Владимира Рюмина «На ракете в мировое пространство», опубликованная в 1912 году. 12 Оберт, Герман Юлиус (1894–1989) – немецкий ученый в области космонавтики и ракетостроения. В Первую мировую войну воевал на Восточном фронте. Получив ранение, вернулся в Трансильванию. Учился в университетах Клужа, Мюнхена, Геттингена и Гейдельберга. В 1924–1938 годы был профессором колледжа в Медиаше, работал в Венском технологическом институте. В 1940 году получил германское гражданство. В 1941–1943 годах был консультантом ракетного центра Пенемюнде, участвовал в создании ракеты «A-4/V-2» под руководством В. фон Брауна. В 1943 году был переведен в Рейнсдорф (Германия), работал на заводах взрывчатых веществ над созданием твердотопливных ракет. В 1945–1948 годах проводил частные исследования в Швейцарии, в 1950–1953 годах жил в Италии, занимался разработкой ракет для военно-морского флота. В 1955 году по приглашению В. фон Брауна приехал в США, работал в Хантсвилле (штат Алабама). Работы Германа Оберта отличались обстоятельностью, он предложил множество технических решений, используемых в ракетостроении и космонавтике до сих пор. 13 Гироскоп (от греч. gyros – круг; в старой литературе еще можно встретить название «жироскоп») – устройство, представляющее собой быстро вращающийся (до сотен и тысяч оборотов в секунду) ротор. Используется в системах управления летательных и космических аппаратов, поскольку быстро вращающееся тело сохраняет свое положение в пространстве, а значит, по отклонению от оси гироскопа можно судить о том, насколько отклонился от заданного направления летательный аппарат. 14 В оригинале книга называлась Die Rakete zu den Planeten-raumen. 15 В оригинале книга называлась Wege zur Raumschiffahrt. 16 Оригинальное название немецкого Общества межпланетных сообщений – Verein fur Raumschiffahrt (VfR). В других странах его часто называли «Немецким ракетным обществом» или «Германским ракетным обществом». 17 Фильм «Женщина на Луне» (нем.: Frau im Mond) снимала киностудия Ufa. Сценарий был основан на одноименном фантастическом романе жены режиссера Фрица Ланга – Теа фон Харбоу. 18 Kegelduse переводится с немецкого как «коническое сопло». Сегодня ее внешний вид кажется необычным. По принципу своей работы первая камера сгорания Германа Оберта сильно отличалась от современных: топливо подавалось в камеру не в дальней от сопла части, а впрыскивалось со стороны сопла навстречу продуктам сгорания. 19 Ракета Mirak (сокр. от Minimumrakete) имела несколько модификаций и разрабатывалась под руководством немецкого изобретателя Рудольфа Небеля. По современным представлениям вид ракеты был весьма необычен. Подобно пороховой ракете, Mirak состояла из «головки» и «направляющей ручки». Последняя представляла собой длинную тонкую алюминиевую трубу, служившую в качестве бака для бензина. «Головка» была сделана из литого алюминия и содержала бак с жидким кислородом. 20 После того как на ракеты Mirak установили новый двигатель Ei («Яйцо»), они получили новое название Repulsor. 21 Изготовление прототипов и самой Pilotrakete оплачивали городские власти Магдебурга, поэтому в литературе эту ракету часто называют Магдебургской ракетой. 22 Носовая тяга подразумевает установку реактивных сопел в носовой части ракеты. Сейчас такая схема расположения сопел представляется экзотической, но в первой трети ХХ века с ее помощью пытались решить проблему стабилизации ракеты в полете. Носовой тяге отдали должное и К. Э. Циолковский, и Г. Оберт, и многие другие основоположники космонавтики. 23 Цандер, Фридрих Артурович (1887–1933) – советский инженер, теоретик космонавтики. В 1914 году окончил Рижский политехнический институт, работал на завод «Проводник», выпускавший различные резиновые изделия. В 1915 году в связи с приближением фронта к Риге завод со всем персоналом был эвакуирован в Москву. В 1919 году Ф. А. Цандер перешел на авиационный завод «Мотор». Проблемами реактивного движения он начал заниматься с 1908 года. Его внимание привлекали вопросы конструирования космических аппаратов, выбор движущей силы, замкнутой системы жизнеобеспечения. Активно популяризировал космонавтику, выступал с лекциями, писал статьи. В 1931 году основал Группу изучения реактивного движения – ГИРД. 24 Фактически Ф. А. Цандер сформулировал концепцию электротермического ракетного двигателя. Распыленный и раскаленный металл дает гораздо большую тягу, чем любое жидкое топливо. Однако его использование требует наличия на борту космического аппарата мощной энергетической установки и особо прочных материалов. Из-за этого электроракетные двигатели пока не получили широкого распространения в космической технике. 25 Планер «БИЧ-8» сконструировал Борис Иванович Черановский, активно экспериментировавший с нестандартными схемами самолетов типа «бесхвостка» и «летающее крыло». 26 ОСОАВИАХИМ – Общество содействия обороне, авиационному и химическому строительству – общественно-политическая оборонная организация, предшественник ДОСААФ. Общество возникло еще во время Гражданской войны, но под этим названием было официально зарегистрировано 23 января 1927 года. В январе 1948 года было реорганизовано и разделено на три обособленные организации. 27 Изначально ГИРД назывался Группой по изучению реактивных двигателей и реактивного летания. 28 В отличие от «ОР-1» двигатель «ОР-2» проектировался с нуля. В нем Ф. А. Цандер применил вытеснительную подачу компонентов топлива сжатым азотом. Зажигание осуществлялось электросвечой. Окислитель (жидкий кислород) использовался для регенеративного охлаждения камеры сгорания. 29 Тухачевский, Михаил Николаевич (1893–1937) – советский военный деятель, маршал Советского Союза (1935). Продвинулся по служебной лестнице во время Гражданской войны, участвовал в подавлении антисоветских восстаний. На всех должностях М. Н. Тухачевский считал своей главной задачей подготовку Рабоче-крестьянской Красной армии к будущей войне, допуская милитаризацию экономики СССР. В январе 1930 году представил советскому руководству доклад о реорганизации вооруженных сил, содержавший предложения об увеличении числа дивизий до 250, о развитии артиллерии, авиации и танковых войск. С 1932 года покровительствовал советским ракетчикам; в 1933 году добился создания Реактивного научно-исследовательского института (РНИИ), занимавшегося разработкой ракетного оружия в СССР. М. Н. Тухачевский был репрессирован в 1937 году по так называемому «делу военных», реабилитирован в 1957 году. 30 Тихонравов, Михаил Клавдиевич (1900–1974) – советский конструктор в области ракетостроения и космонавтики. В 1925 году окончил Военно-воздушную академию имени Н. Е. Жуковского, работал на ряде авиационных предприятий, конструировал планеры. В 1932 году возглавил бригаду в ГИРД. Руководил созданием первой советской ракеты с двигателем на гибридном топливе, занимался исследованием жидкостных ракетных двигателей, разработкой ракет для изучения верхних слоев атмосферы, вопросами повышения кучности стрельбы неуправляемыми реактивными снарядами. 31 Победоносцев, Юрий Александрович (1907–1973) – советский ученый, конструктор ракетной техники. В 1926 году поступил в Московское высшее техническое училище, в 1930 году закончил Московский авиационный институт. С 1925 года работал в Центральном аэрогидродинамической институте (ЦАГИ), с 1932 года – в ГИРД, с 1933 года – в РНИИ. Участвовал в создании реактивных минометов «БМ-8» и «БМ-13» («Катюша»), внес большой вклад в теорию горения порохов, установив критерий устойчивости горения, известный как «критерий Победоносцева». Автор трудов по внутренней баллистике ракетных двигателей. 32 Воздушно-реактивный двигатель (ВРД) – ракетный двигатель, использующий в качестве окислителя внешний воздух. Различные летательные аппараты с ВРД разрабатывались с 1930-х годов. Для начала процесса горения в таком двигателе аппарат нужно сначала разогнать, поэтому его используют только в качестве маршевого. В настоящее время нашел применение в гиперзвуковых высотных аппаратах. 33 Планер «БИЧ-11» разрабатывался авиаконструктором Б. И. Черановским в рамках программы ГИРД по созданию ракетоплана «РП-1». Двигатель «ОР-2» конструкции Ф. А. Цандера предполагалось установить за кабиной пилота, а баки для горючего и окислителя – встроить в обтекатели на крыле по бокам гондолы фюзеляжа. 34 Сначала «БИЧ-11» летал как планер на IX планерных состязаниях 1933 года. Для дальнейших испытаний его оснастили поршневым мотором АВС Scorpion. Облет планера «БИЧ-11» проводился вначале на аэродроме Московской школы летчиков у станции Планерная Октябрьской железной дороги, затем – у станции Трикотажная. 35 Другое название ракеты «ГИРД-09» – «Р-1», но его редко используют в исторической литературе, поскольку возникает путаница с послевоенной ракетой С. П. Королёва «Р-1», созданной на основе «А-4^-2». 36 Клеймёнов, Иван Терентьевич (1898–1938) – советский военный инженер, один из организаторов и руководителей разработок ракетной техники. В 1928 году окончил Военно-воздушную академию имени Н. Е. Жуковского. В 1932–1933 годах возглавлял Газодинамическую лабораторию в Ленинграде (ГДЛ), в 1933–1937 годах – начальник РНИИ. В 1937 году был репрессирован, в 1955 году реабилитирован. Лишь в 1991 году Клейменов был признан одним из конструкторов реактивных минометов «БМ-8» и «БМ-13» («Катюша»), посмертно удостоен звания Героя Социалистического Труда. 37 В Германской республике, образованной после поражения в Первой мировой войне, существовал так называемый «черный рейхсвер» – теневая армия, состоящая из внешне благопристойных гражданских и спортивных объединений. Отряды «черного рейхсвера» объединили около четырех миллионов здоровых и способных носить оружие мужчин, имевших опыт боевых действий. Был сохранен даже Генеральный штаб, действующий под видом Управления войск. Часть ветеранов служила в полицейских силах, и впоследствии многие из них возглавляли дивизии и корпуса. Каждый солдат и офицер «черного рейхсвера» готовился таким образом, чтобы в случае войны сразу принять командование: при этом майоры становились полковниками или генералами, а лучшие унтер-офицеры превращались в лейтенантов или капитанов. 38 Беккер, Карл Хенрих Эмиль (1879–1940) – немецкий военный инженер, первый руководитель ракетной программы Третьего рейха. В 1911 году закончил Берлинскую военно-инженерную академию, в 1908–1911 годах работал техническим ассистентом в лаборатории баллистики. В период Первой мировой войны командовал артиллерийской батареей. После войны изучал химию и металлургию. В 1922 году получил докторскую степень. В 1930 году возглавил Отдел баллистики и боеприпасов при Управления вооружениями сухопутных сил. В 1937 году в звании генерала стал первым президентом Научно-исследовательского совета рейха. Покончил с собой после жесткой критики со стороны Адольфа Гитлера. 39 Дорнбергер, Вальтер Роберт (1895–1980) – немецкий инженер, один из основателей тяжелого ракетного машиностроения, генерал-лейтенант. Сразу после окончания школы был призван в армию. В Первую мировую войну служил в тяжелой артиллерии, в 1918 году попал в плен. В 1930 году окончил Шлоттенбургскую высшую техническую школу в Берлине и в том же году по протекции К. Беккера был направлен в Отдел баллистики и боеприпасов Управления вооружениями сухопутных сил рейхсвера. Имея звание капитана, стал фактическим научным куратором всех ракетных исследований. В 1937–1945 годах руководил ракетным центром Пенемюнде. В 1945 году сдался в плен американцам. После отбывания наказания за военные преступления работал научным консультантом фирмы Bell Aircraft Corporation. 40 Фон Браун, Вернер Магнус Максимилиан (1912–1977) – немецкий конструктор ракетно-космической техники, основоположник современного ракетостроения, создатель тяжелых баллистических ракет на жидком топливе. Принадлежал к аристократическому роду и слыл шалопаем, но прочел книгу Г. Оберта «Ракета для межпланетного пространства» и не на шутку увлекся идеей космических полетов. В 1930 году В. фон Браун поступил в Берлинский технический университет и присоединился к Обществу межпланетных сообщений. Также учился в Швейцарской высшей технической школе Цюриха. В 1932 году принят в ракетную научную группу В. Дорнбергера, с 1937 года – технический руководитель ракетного центра Пенемюнде. Чтобы получить эту должность, ему пришлось вступить в Национал-социалистическую партию и СС. В 1945 году В. фон Браун сдался наступающей американской армии вместе с документацией и сотрудниками центра Пенемюнде. В США возглавил Службу проектирования и разработки вооружения армии в Форт-Блиссе (штат Техас). С 1950 года работал в Редстоунском арсенале в Хантсвилле (штат Алабама). С 1956 года – руководитель американской программы разработки межконтинентальных баллистических ракет. С 1960 года – директор Центра космических полетов НАСА, руководитель разработок ракет-носителей серии Saturn. 41 Ридель, Вальтер (1902–1968) – немецкий инженер, конструктор жидкостных ракетных двигателей. Вошел в историю ракетостроения как «Папа» Ридель (его часто путают с другим ракетчиком из группы В. фон Брауна – Клаусом Риделем). Работал на химическом заводе Хейланда, где в 1930 году познакомился с энтузиастом космонавтики Максом Валье. Вместе с Валье сконструировал двигатель для ракетного автомобиля, а после смерти последнего в результате взрыва продолжал работать в этой области. В 1932 году присоединился к В. фон Брауну и сконструировал первые двигатели для его ракет, возглавлял Конструкторское бюро ракетного центра Пенемюнде. В 1945 году попал в плен к американцам и был отправлен в лагерь. После войны около года работал в Англии, потом переехал в США, где руководил исследовательской группой в North American Aviation Corporation. 42 Курс, крен, тангаж – угловые координаты движущегося тела, характеризующие его отклонение от трех осей координат. Проще говоря, курс – носом вправо или влево, крен – на левый или правый борт, тангаж – носом вверх или вниз. 43 На этом снимке был запечатлен самолет-снаряд «Fi-103» с пульсирующим воздушно-реактивным двигателем, который разрабатывался сотрудниками «Пенемюнде-Запад» по заказу немецких ВВС и вошел в историю как «V-1». 44 В ходе первого этапа «Войны механизмов» по целям в Англии было выпущено 8070 (по другим источникам – 9017) самолетов-снарядов «Fi-103» («V-1»). Истребители английской ПВО уничтожили 1847 «V-1», расстреливая их бортовым оружием или сбивая спутным потоком. Зенитная артиллерия уничтожила 1878 самолетов-снарядов. Об аэростаты заграждения разбилось 232 снаряда. В целом было сбито почти 53 % всех самолетов-снарядов «V-1», выпущенных по Лондону, и только 32 % наблюдаемых самолетов-снарядов прорвалось к району целей. Все же нанесенный ущерб оказался довольно значительным: было уничтожено 24 491 жилое здание, погибло 5864 человека, 17 197 были тяжело ранены. 45 По абсурдным обвинениям были арестованы следующие сотрудники РНИИ: директор И. Т. Клейменов (расстрелян), главный инженер Г. Э. Лангемак (расстрелян), главный конструктор двигателей В. П. Глушко (осужден на восемь лет), начальник отдела С. П. Королев (осужден на десять лет). 46 Справедливости ради надо отметить, что реорганизация РНИИ началась еще до арестов. В конце 1936 года Наркомат тяжелой промышленности (НКТП), в структуру которого входил Реактивный научно-исследовательский институт, был разделен на ряд наркоматов, в частности из него был выделен Наркомат оборонной промышленности (НКОП). И. Т. Клеймёнов добился передачи института из НКТП в НКОП, что сулило повышение финансирования. Тогда же институт был переименован из РНИИ в НИИ-3 и стал закрытой организацией. Однако смена руководства после устранения И. Т. Клеймёнова привела к изменению приоритетов – основным направлением деятельности НИИ-3 стало создание реактивных снарядов, а потому в 1940 году институт был переподчинен Наркомату боеприпасов. 47 Операция по поиску, вербовке и вывозу немецких военных специалистов за океан получила название Paperclip («Скрепка»). За несколько послевоенных лет в США были вывезены свыше 1500 человек. 48 В рамках операции Backfire («Отдача») англичане осуществили четыре запуска ракет «А-4», 1, 2, 4 и 14 октября; только два из четырех были успешны. 49 ЦКБ-29 («Туполевская шарашка», «шарага») – режимное конструкторское бюро, созданное НКВД СССР для работ над перспективной авиационной техникой. Сотрудники для бюро набирались из числа осужденных по «политическим» статьям инженеров и конструкторов. Сам глава бюро А. Н. Туполев был арестован по обвинению во вредительстве и шпионаже в октябре 1937 года. В ЦКБ-29 трудились многие прославленные впоследствии авиаконструкторы: Р. Л. Бартини, Б. С. Стечкин, В. М. Мясищев, В. М. Петляков и др. 50 Реактивный перехватчик «РП» был создан С. П. Королёвым на основе самолета «Пе-2» путем установки на него жидкостного ракетного двигателя «РД-1» конструкции В. П. Глушко. 51 При создании ракет дальнего действия «Д-1» и «Д-2» С. П. Королёв предполагал использовать богатый опыт эксплуатации реактивных минометов «БМ-13» («Катюша»). При этом «Д-1» должна была иметь дальность полета в пределах от 12 до 13 км, а снабженная крыльями «Д-2» – от 60 до 115 км в зависимости от примененного пороха. В записке к проекту С. П. Королёв не забыл указать, что замена пороха на жидкое топливо позволит увеличить дальность полета этих ракет до 150 км. 52 Подземный завод Миттельверк (нем.: Mittelwerk) был создан для серийного производства самолетов-снарядов «V-1» и баллистических ракет «V-2» в шахтах по добыче гипса в горе Конштайн, вблизи города Нордхаузен. Строительство завода велось руками военнопленных, политических заключенных и насильственно угнанных в Германию жителей различных стран. В дальнейшем, когда завод вошел в строй, на производстве ракет работали свыше 40 тысяч заключенных. Лагерь «Дора-Миттельбау», где размещались рабочие подземного завода – русские и поляки, чехи и французы, югославы, итальянцы, немцы – по жестокости обращения и невыносимым условиям труда стоял в одном ряду с Бухенвальдом и другими нацистскими «фабриками смерти». 53 Устинов, Дмитрий Фёдорович (1908–1984) – советский военачальник, государственный и партийный деятель. В 1922–1923 годах служил в Красной Армии, после чего окончил профтехшколу и Ленинградский военно-механический институт. С 1934 года – инженер в Артиллерийском морском НИИ, начальник бюро эксплуатации и опытных работ; с 1937 года – инженер-конструктор, заместитель главного конструктора и директор ленинградского завода «Большевик». Незадолго до начала Великой Отечественной войны был назначен народным комиссаром вооружения СССР. На этом посту он внес значительный вклад в достижение победы, обеспечив массовый выпуск оружия и успешное освоение производства новых видов вооружения. В 1946–1953 годах занимал пост министра вооружения, в 1953–1957 годах Д. Ф. Устинов – министр оборонной промышленности СССР, а в 1957–1963 годах – заместитель председателя Совета Министров СССР. Позднее был министром обороны СССР и членом Политбюро ЦК КПСС (1976). 54 Маленков, Георгий Максимилианович (1901–1988) – советский государственный и партийный деятель. В 1919 году закончил классическую гимназию и был призван в Красную армию. В 1920–1930 годах – сотрудник Организационного отдела ЦК ВКП(б), с 1927 года – технический секретарь Политбюро ЦК, в 1934–1939 годах – заведующий отделом руководящих партийных органов ЦК ВКП(б), с 1939 года – начальник Управления кадров ЦК и секретарь ЦК. В годы Великой Отечественной войны Г. М. Маленков был членом Военных советов ряда фронтов, членом Государственного комитета обороны, комиссаром авиационной промышленности. Курировал ряд важнейших отраслей оборонной промышленности, в том числе создание водородной бомбы и первой атомной электростанции. Фактический руководитель СССР в 1953–1955 годах. 55 Зубович, Иван Герасимович (1901–1956) – советский инженер, государственный деятель. В 1935 году окончил Ленинградский индустриальный институт. В 1935–1938 годах работал на ленинградских предприятиях: начальник цеха, начальник производства завода «Электроприбор», директор завода № 210. В 1938–1939 годах возглавил 5-е Главное управление Наркомата оборонной промышленности СССР, в 1939–1940 годы – 7-е Главное управление Наркомата авиационной промышленности СССР. В годы войны занимал руководящие должности в Наркомате электропромышленности СССР. В 1946–1947 годах – министр промышленности средств связи СССР, в 1949–1953 годах – заместитель министра вооружения СССР. На посту заместителя министра организовал перестройку значительной части радиотехнической промышленности на разработку и выпуск аппаратуры для ракетной техники, стал инициатором образования крупнейших научно-исследовательских организаций. 56 Подлипки – город, расположенный к северо-востоку от Москвы. Поселок Подлипки возник как дачный в конце XIX века. С тех пор его название менялось три раза: поселок Калининский (после 1928 года), город Калининград (после 1938 года), Королёв (после 1996 года). Ныне Королёв является крупнейшим ракетно-космическим центром; в нем находятся основные производственные мощности РКК «Энергия», Центр управления полетами (ЦУП-М) и ряд конструкторских бюро, работающих на космонавтику. 57 Греттруп, Хельмут (1916–1981) – немецкий инженер-ракетчик, специалист по системам управления. В центре Пенемюнде занимал должность заместителя руководителя Группы управления баллистических и управляемых ракет. Самый крупный представитель административного звена немецкого ракетного проекта, согласившийся сотрудничать не с американской, а с советской стороной. В 1946–1953 годах в качестве сотрудника филиала № 1 НИИ-88 на острове Городомля руководил разработкой ракет «Г-1», «Г-2», «Г-4» и «Г-5». Все эти проекты так и остались на бумаге. После возвращения в Германию по требованию советской стороны Х. Греттруп не был допущен к работе над ракетными технологиями и занимался электронными банковскими системами. 58 Баллистическая ракета «Г-1» (другое обозначение «R-10») была спроектирована на основе ракеты «А-4^-2» и рассчитана на дальность 600 км. Основные особенности проекта «Г-1»: сохранение габаритов «А-4» с уменьшением сухой массы и значительным увеличением объема для топлива; упрощение бортовой системы управления за счет передачи части ее функций наземному радиоуправлению; максимально возможное упрощение самой ракеты; применение отделяемой головной части и несущих баков; уменьшение площади хвостовых стабилизаторов; облегчение корпуса за счет широкого применения легких сплавов. Поскольку реализация проекта «Г-1» подразумевала внедрение целого ряда революционных технических новшеств, потребовалась бы обширная работа по их стендовой проверке, что в условиях изоляции на острове Городомля было очень трудно осуществить. Поэтому в итоге выбор был сделан в пользу ракеты «Р-2» конструкции С. П. Королёва. 59 Военный аэродром в Подлипках использовался для испытаний ракетной техники еще до того, как там был развернут ракетно-космический центр. Двадцать восьмого февраля, 10 и 19 марта 1940 года на этом аэродроме под руководством сотрудника НИИ-3 А. В. Палло были проведены успешные полеты ракетоплана «РП-318-1» конструкции С. П. Королёва. Ракетоплан пилотировал летчик-испытатель В. П. Фёдоров. 60 Глушко, Валентин Петрович (1908–1989) – советский инженер, конструктор ракетных двигателей. В 1921 году начал интересоваться вопросами космонавтики, с 1923 года переписывался с К. Э. Циолковским, с 1924 года публиковал научно-популярные и научные работы по вопросам космонавтики. В 1929 году закончил обучение в Ленинградском университете, работал в ГДЛ, где сформировал подразделение по разработке электроракетных и жидкостных двигателей. В 1934–1938 годах продолжил работу в РНИИ. В 1938 году В. П. Глушко был репрессирован, до 1940 года работал в конструкторской группе 4-го Спецотдела НКВД при Тушинском авиамоторостроительном заводе № 82. Затем был переведен в Казань, где продолжил работу в качестве главного конструктора КБ 4-го Спецотдела НКВД при заводе № 16. В 1944 году был досрочно освобожден, в 1956 году полностью реабилитирован. В 1946 году В. П. Глушко был назначен главным конструктором ОКБ-456 в Химках. 61 Пилюгин, Николай Алексеевич (1908–1982) – советский инженер-конструктор в области систем автономного управления ракетными и ракетно-космическими комплексами. После окончания школы в 1926 году начал работать слесарем, а затем файнмехаником в ЦАГИ. В 1930 году по направлению А. Н. Туполева поступил в Московское высшее техническое училище (МВТУ). С 1935 года работал в ЦАГИ и Летно-испытательном институте (ЛИИ). С 1944 году – в отделе управления НИИ-1 по ракетной технике. В 1946 году Н. А. Пилюгин становится главным конструктором автономных систем управления баллистических ракет в НИИ-885. С 1966 года Н. А. Пилюгин – действительный член Академии наук, с 1969 года – заведующий кафедрой Московского института радиотехники, электроники и автоматики. 62 Бармин, Владимир Павлович (1909–1993) – советский инженер, конструктор ракетно-космических и боевых стартовых комплексов. В 1930 году окончил механический факультет МВТУ. Работал на московском заводе «Компрессор» инженером-конструктором, с 1940 года – главный конструктор завода. Через несколько дней после начала Великой Отечественной войны «Компрессор» был переориентирован на производство реактивных снарядов и пусковых установок «БМ-8» и «БМ-13» («Катюш»). После войны В. П. Бармин возглавил ГСКБ «Спецмаш» – предприятие по созданию стартового, подъемно-транспортного, заправочного и вспомогательного наземного оборудования ракетных комплексов. Основатель и первый заведующий кафедрой «Стартовые ракетные комплексы» МГТУ имени Н. Э. Баумана. Кроме того, В. П. Бармин руководил созданием автоматических грунтозаборных устройств для исследования Луны и Венеры. С 1966 года – действительный член Академии наук СССР. 63 Рязанский, Михаил Сергеевич (1909–1987) – советский инженер, конструктор систем радиоуправления летательными аппаратами. Еще в школьные годы Рязанский увлекся радио, что определило всю его дальнейшую жизнь. В 1924–1927 годы на общественных началах руководил радиокружком, стал коротковолновиком-любителем. М. С. Рязанский первым в СССР установил радиосвязь с ледоколом «Красин», который шел спасать экспедицию Умберто Нобиле. В 1931 году М. С. Рязанский поступил в Ленинградский электротехнический институт и одновременно устраился в Особое техническое бюро (Остехбюро). В 1933–1935 годах учился в Московском электротехническом институте. Во время войны работал в НИИ-20 над первым советским радиолокатором «Пегматит». В 1946 году М. С. Рязанский перевелся в НИИ-885, а в 1947 году был назначен главным конструктором системы радиоуправления баллистических ракет. В 1955 году стал директором и главным конструктором НИИ-885. В 1958 году был избран членом-корреспондентом Академии наук. 64 Кузнецов, Виктор Иванович (1913–1991) – советский ученый в области прикладной механики и автоматического управления. В 1938 году окончил Ленинградский индустриальный (политехнический) институт, затем разрабатывал гироскопические приборы для Военно-морского флота. В 1940 году В. Н. Кузнецов был назначен начальником отдела гироскопической техники секретного московского НИИ-10. В 1946 году возглавил ОКБ НИИ-10 Министерства судостроительной промышленности и руководил созданием бортовых командных приборов для баллистических ракет и космических аппаратов. В его бюро были созданы уникальные плавающие сферические гироплатформы, бесплатформенные инерциальные системы и многое другое. С 1968 года – действительный член Академии наук СССР. 65 Вознюк, Василий Иванович (1907–1976) – советский военачальник. В 1929 году окончил 1-ю Ленинградскую артиллерийскую школу имени Красного Октября, служил в Днепропетровске. Во время Великой Отечественной войны занимал различные командные должности в гвардейских минометных соединениях, оснащенных минометами «БМ-13» («Катюша»). В 1943 году В. И. Вознюку было присвоено звание генерал-лейтенанта артиллерии. С июня 1946 года по апрель 1973 года был начальником ракетного полигона Капустин Яр. 66 Бригады особого назначения (БОН) стали основой при формировании советских ракетных войск стратегического назначения. Первым таким соединением была созданная 15 августа 1946 года в составе Группы советских войск в Германии 72-я инженерная бригада особого назначения Резерва верховного главнокомандования (РВГК). Спустя год ее вывели из Германии в СССР на полигон Капустин Яр. В декабре 1950 года была сформирована вторая бригада особого назначения, в 1951–1955 годы – еще пять таких бригад. До 1955 года они были вооружены баллистическими ракетами «Р-1» и «Р-2», оснащенными головные частями с обычным взрывчатым веществом. 67 Идею сложных космических ракет, состоящих из однотипных ракет поменьше, К. Э. Циолковский разрабатывал с 1916 года. Впервые он описал эту концепцию в научно-фантастической повести «Вне Земли» (1918): «От простой ракеты перешли к сложной, т. е. составленной из многих простых. В общем, это было длинное тело, формы наименьшего сопротивления, длиною в 100, шириною в 4 метра, что-то вроде гигантского веретена. Поперечными перегородками оно разделялось на 20 отделений, каждое из которых было реактивным прибором, т. е. в каждом отделении содержался запас взрывчатых веществ, была взрывная камера с самодействующим инжектором, взрывная труба и пр». 68 Вернов, Сергей Николаевич (1910–1982) – советский физик. После окончания средней школы поступил сначала в Механический техникум, но уже в следующем году стал студентом физико-механического факультета Ленинградского политехнического института, который окончил в 1931 году. Еще будучи студентом, С. Н. Вернов начал работать в Государственном Радиевом институте, куда и был направлен по распределению. Сферой интересов молодого научного работника стали космические лучи, причем для их изучения он предлагал использовать высотные радиозонды и ракеты. В 1939 году защитил докторскую диссертацию, продолжил работу в Физическом институте Академии наук (ФИАН). В 1943 году перешел в Московский государственный университет (МГУ), на физический факультет. Одним из первых начал сотрудничество с ракетчиками: с 1947 года аппаратура, разработанная под руководством С. Н. Вернова, устанавливалась на советские баллистические ракеты, а впоследствии – на искусственные спутники Земли. В 1968 году С. Н. Вернов стал академиком АН СССР по Отделению ядерной физики. 69 Яздовский, Владимир Иванович (1913–1999) – советский ученый и конструктор, специалист по авиационной и космической медицине. В 1941 году окончил Ташкентский медицинский институт и подготовил кандидатскую диссертацию по нейрохирургии. Во время Великой Отечественной войны проходил службу в должности начальника медицинской службы 289-й штурмовой авиадивизии. После окончания войны был переведен в Научно-исследовательский испытательный институт авиационной медицины. В институте прошел путь от научного сотрудника, начальника лаборатории, отдела, управления до заместителя начальника института по науке (космическая биология и медицина). Под руководством В. И. Яздовского изучались медицинские проблемы разработки скафандров и герметичных кабин, осуществлялись биологические исследования верхних слоев атмосферы и космического пространства. В 1964–1967 годах В. И. Яздовский работал в Институте медико-биологических проблем (ИМБП) Минздрава СССР заведующим сектором и заместителем директора по науке. 70 На базе сектора военно-воздушной службы Научно-исследовательского испытательного санитарного института РККА 1 января 1935 года был создан Авиационный научно-исследовательский санитарный институт РККА. Позднее он был переименован в Научно-исследовательский испытательный институт авиационной медицины РККА имени И. П. Павлова, а затем – в Государственный научно-исследовательский испытательный институт (авиационной и космической медицины) Министерства обороны Российской Федерации. Первого января 1999 года институт преобразован в Научно-исследовательский испытательный центр (авиационно-космической медицины и военной эргономики) в составе Государственного научно-исследовательского испытательного института военной медицины Министерства обороны Российской Федерации. 71 Из всех обезьянок, которых американские ученые запускали в головных частях ракет на первом этапе исследований, без проблем вернуться на Землю повезло только филиппинским макакам Майку и Патриции – 21 мая 1952 года в ракете Aerobee-26 они поднялись на высоту 62 км. 72 Павлов, Иван Петрович (1849–1936) – один из авторитетнейших ученых России, физиолог, психолог, создатель науки о высшей нервной деятельности и представлений о процессах регуляции пищеварения; основатель крупнейшей российской физиологической школы; лауреат Нобелевской премии в области медицины и физиологии 1904 года «за работу по физиологии пищеварения». 73 По другим данным, ракета не пересекла условную границу космоса, поднявшись на высоту 87 км. 74 Чернышев, Николай Гаврилович (1906–1953) – советский инженер-химик. Первый опыт научной работы приобрел, будучи студентом Донского политехнического института. После окончания Ленинградского химико-технологического института работал в ГДЛ у В. П. Глушко, затем – в ГИРД, РНИИ, КБ-7 и других организациях. В первые дни Великой Отечественной войны Н. Г. Чернышев добровольцем ушел на фронт. В 1944 году участвовал в первой экспедиции советских специалистов на немецкий ракетный полигон в Польше. Затем возглавил в НИИ-1 лабораторию по изучению и воспроизведению топливных компонентов немецких ракет и взрывчатых веществ. В 1946 году перешел в НИИ-4 в группу М. К. Тихонравова, разрабатывавшую проект пилотируемой высотной ракеты «ВР-190». В эти же годы Н. Г. Чернышев одним из первых начал изучать историю ракетостроения в стране, публиковать статьи, писать книги по истории ракетостроения и межпланетным полетам. В 1948 году он принял активное участие в создании и работе факультета «Ракетно-космическая техника» МВТУ имени Н. Э. Баумана. 75 Речь идет об Экспертной комиссий под председательством заместителя начальника ЦАГИ академика С. А. Христиановича, созданной специально для изучения проекта «ВР-190». 76 Нестеренко, Алексей Иванович (1908–1995) – советский военачальник. В вооруженных силах с 1925 года по 1966 год. Участник боев с белокитайцами во время конфликта на КВЖД, Советско-финской и Великой Отечественной войн. Командовал подразделениями гвардейских минометных частей («БМ-8», «БМ-13»), дослужившись до заместителя командующего артиллерией фронта. В 1943 году получил звание гвардии генерал-лейтенанта артиллерии. В 1955–1958 годах стал первым начальником полигона Тюра-Там, возглавлял НИИ-4 и ракетный факультет Академии имени Ф. Э. Дзержинского. 77 Перед «Р-5» в бюро С. П. Королёва прорабатывался проект баллистической ракеты «Р-3» на дальность полета 3000 км. «Р-5» родилась как модификация экспериментальной «Р-3А» – для экономии времени и ресурсов вместо экспериментальной сразу решили делать боевую ракету. 78 Благодаря «кислородному» инею возникла одна из традиций современных ракетчиков. Военнослужащие космодрома Плесецк выводят на нем имя «ТАНЯ». Кто придумал эту традицию и кто такая Таня, никто уже не помнит, но однажды имя не написали – и «семерка» взорвалась на старте. 79 Испытательный комплекс под Загорском (Сергиев Посад) функционирует и сегодня. В 1956 году это предприятие получило название НИИ-229, а в 1967 году – Научно-исследовательский и конструкторский институт химического машиностроения (НИИхиммаш). 80 Циклограмма запуска – таблично-графическое изображение последовательности операций подготовки к запуску и запуска с указанием времени, затрачиваемого на каждую операцию. Применительно к ракете циклограмма начинается с операции ее установки на пусковое устройство и заканчивается ее пуском. За нуль отсчета времени принимают момент отрыва ракеты от пусковой установки (Т 0.00.00). Время свершения событий, происходящих до момента «нуль отсчета времени», обозначается на временной оси со знаком «минус». Если, например, заправка баков окислителем должна начаться за 5 часов 31 минут 12 секунд до взлета ракеты, то это событие на временной оси циклограммы происходит в момент времени Т-5.31.12. Время свершения событий, происходящих после нуля отсчета времени, обозначается со знаком «плюс». Например, если отделение первой ступени происходит на 123-й секунде после подъема ракеты, то это событие на временной оси циклограммы происходит в момент времени Т+0.02.03. Применительно к двигателю или другому устройству циклограмма отражает последовательность команд на срабатывание его элементов, обеспечивающих заданный режим работы. 81 На ракетах «А-4/V-2» использовалась система боковой радиокоррекции «Гавайя-Виктория» («Гавайя» – наземный передатчик, «Виктория» – бортовое приемное устройство). Система имела малую помехоустойчивость и с ее помощью было трудно перенацелить ракету, поэтому от нее быстро отказались, заменив более совершенной отечественного производства. 82 «Р-2Р» – модификация баллистической ракеты «Р-2», созданная для отработки системы радиоуправления дальностью ракеты «Р-5». Запуски «Р-2Р» проводились в рамках серии испытаний разных вариантов «Р-2» с 21 октября по 20 декабря 1950 года. 83 Индекс РДС в названии атомных бомб расшифровывается как «Россия делает сама». Практически все военные атомные разработки в СССР были начаты и доведены до эффектного результата в качестве ответа на аналогичные проекты в США. Так, первое термоядерное устройство Mike мощностью 10,4 мегатонн в тротиловом эквиваленте американские физики испытали в ноябре 1952 года. 84 За свою славную многолетнюю историю МВТУ имени М. Э. Баумана неоднократно реорганизовывался и переименовывался. В 1764–1830 годы он назывался Императорский воспитательный дом, в 1830–1868 годы – Московское ремесленное учебное заведение (МРУЗ), в 1868–1918 годы – Императорское Московское техническое училище (ИМТУ), в 1918–1930 годы – Московское высшее техническое училище (МВТУ), в 1930 году – Московское механико-машиностроительное училище, в 1930–1943 годы – Московский механико-машиностроительный институт им. Н. Э. Баумана (МММИ им. Н. Э. Баумана). В 1943–1989 годы – Московское высшее техническое училище им. Н. Э. Баумана (МВТУ им. Н. Э. Баумана), с 1989 года – Московский государственный технический университет им. Н. Э. Баумана (МГТУ им. Н. Э. Баумана). 85 Благонравов, Анатолий Аркадьевич (1894–1975) – советский ученый в области механики (баллистики). В 1916 году окончил Петроградский политехнический институт, в том же году – Михайловское артиллерийское училище, в 1924 году – Высшую артиллерийскую школу и в 1929 году – Военно-техническую академию. С 1953 года – директор Института машиноведения АН СССР. В 1957–1963 годы – академик-секретарь Отделения технических наук АН СССР. С конца 1940-х годов А. А. Благонравов вел научно-организационную работу по исследованию верхних слоев атмосферы при помощи ракет, с 1963 года – председатель Комиссии по исследованию и использованию космического пространства Академии наук. Генерал лейтенант артиллерии и действительный член Академии наук с 1943 года. 86 Седов, Леонид Иванович (1907–1999) – советский ученый в области механики. В 1924 году поступил на педагогический факультет Ростовского университета. В 1926 году перевелся на физико-математический факультет МГУ, который окончил в 1930 году. Научную деятельность начал в 1931 году в теоретической группе ЦАГИ. В 1937 году защитил диссертацию на соискание ученой степени доктора физико-математических наук по теме «Теория плоских движений идеальной жидкости». Действительный член Академии наук СССР с 1953 года. Л. И. Седов был главным редактором журнала «Космические исследования», заместителем главного редактора журнала «Доклады АН СССР», членом редколлегии журнала «Прикладная математика и механика». Многие из руководителей советской космической программы, в силу закрытости проводимой работы, оставались неизвестными широкой публике, из-за этого часто выезжавший на международные конференции Л. И. Седов стал известен на Западе как «отец спутника». Почти четверть века Седов стоял у руководства Международной астронавтической федерации (1959–1961 годы – президент, 1957–1959 и 1961–1980 годы – вице-президент). 87 «Р-5А» – геофизическая ракета, разработанная на основе баллистической ракеты «Р-5М», с высотой полета до 500 км. На ракете «Р-5А» были продолжены геофизические исследования на больших высотах, начатые ракетами «Р-1А» и «Р-2А». В головной части имелся специальный герметичный отсек для медико-биологических экспериментов с двумя клетками из плексигласа, что позволяло с помощью киносъемки вести наблюдения за поведением животных во время полета. Кроме того, с помощью «Р-5А» проводились эксперименты для обеспечения перспективных разработок ОКБ-1. Один из них имел прямое отношение к программе запуска межпланетного аппарата – необходимы были средства, позволяющие зафиксировать его местоположение в момент приближения к Луне. Для этой цели была предложена так называемая «натриевая комета» – на соответствующей высоте с помощью реакции разложения натрия создавалось облако, которое можно было наблюдать в телескоп. Такой эксперимент был проведен 19 сентября 1958 года; его результаты позволили сделать вывод о возможности использования «натриевой кометы» при пусках автоматических станций к Луне. 88 Идея «эскадры ракет» пришла в голову К. Э. Циолковскому «15 декабря 1934 г. после 6 ч вечера» – перспективы, связанные с практической реализацией этой идеи, показались ему столь поразительными, что ученый запомнил не только день, но и час своего озарения и решительно пересмотрел спрогнозированные им ранее сроки осуществления космических путешествий с сотен на десятки лет. 89 Отделение прикладной математики Математического института имени М.В.Стеклова Академии наук СССР было создано академиком М. В. Келдышем в 1953 году. Основное содержание работ Отделения составляли принципиально новые математические задачи, связанные с полетом искусственных спутников Земли и межпланетных станций к Луне, Марсу и Венере. В 1963 году на базе Отделения был создан Институт прикладной математики Академии наук СССР. 90 В специальной и исторической литературе можно встретить и другой порядок именования блоков ракетного «пакета»: боковые блоки – «А», «Б», «В», «Г», центральный – «Д». Иногда центральный блок обозначают еще и буквой «Ц». Однако общепринятой считается порядок, приведенный в этой книге. 91 Сегодня на базе ОКБ-456 в Химках функционирует ОАО «НПО Энергомаш имени академика В. П. Глушко» – российское предприятие, являющееся ведущим разработчиком и производителем жидкостных ракетных двигателей. 92 Ленинградская Газодинамическая лаборатория (ГДЛ) – научно-исследовательская и опытно-конструкторская лаборатория, деятельность которой была посвящена разработке ракетных снарядов на бездымном порохе и жидкостных ракетных двигателей. В конце 1933 года вошла в состав РНИИ. Сегодня на территории стендовой базы ГДЛ (Иоанновский равелин Петропавловской крепости) находится Музей космонавтики и ракетной техники. 93 Мишин, Василий Павлович (1917–2001) – советский инженер, конструктор ракетно-космической техники. В 1932 году поступил в фабрично-заводское училище при ЦАГИ, получил рабочую квалификацию слесаря. Параллельно учился на вечерних подготовительных курсах при ВТУЗе, и в 1935 году поступил в Московский авиационный институт. После окончания МАИ в 1941 году был направлен в авиационное бюро В. Ф. Болховитинова, где в военные годы принимал участие в создании систем вооружения самолетов, в том числе и первого ракетного истребителя «БИ-1». В 1946 году занял должность первого заместителя главного конструктора С. П. Королёва, в этом качестве работал до января 1966 года. После смерти С. П. Королёва возглавил ОКБ-1, реорганизованное в Центральное конструкторское бюро экспериментального машиностроения (ЦКБЭМ), и руководил им до 1974 года. Действительный член Академии наук с 1966 года. 94 Мельников, Михаил Васильевич (1919–1996) – советский инженер, конструктор ракетных двигателей. В 1937 году поступил в Московский авиационный институт, окончить который смог только в 1945 году, в 1940–1945 годы работал на опытном заводе 293 (бюро В. Ф. Болховитинова), участвовал в создании ракетных самолетов «БИ». В 1945 году М. В. Мельников в должности начальника лаборатории переведен в НИИ-1. С 1956 года – заместитель главного конструктора С. П. Королёва по двигателям. Был одним из ведущих специалистов по проектированию жидкостных и электрических ракетных двигательных установок. 95 Вес тела – величина, обусловленная не только гравитационным притяжением земли, но и центростремительным отталкиванием вследствие ее вращения. Эта же сила удерживает воду в ведерке, если вращать его на веревке. Тело на экваторе движется по окружность максимального радиуса. На полюсе этот радиус равен нулю и, таким образом, центробежная сила равна нулю. Если оценить величину изменения веса, то на экваторе она составляет 1/290 часть веса на полюсе. То есть если тело весит на экваторе 1 кг, то на полюсе его вес составит 1,005 кг – на 5 г больше. 96 Это не имеет значения в быту, но в ракетно-космических технологиях каждый грамм на вес золота. 97 Шубников Георгий Максимович (1903–1965) – советский военачальник, инженер-строитель, генерал-майор. В 1920 году начал трудовую деятельность простым рабочим, а затем десятником, одновременно занимался в вечернем архитектурно-строительном техникуме, который окончил в 1925 году. В 1930–1932 годах учился в Ленинградском институте гражданского и промышленного строительства; по окончании был призван в ряды Красной армии и направлен на строительство Забайкальского укрепленного района. По завершении оборонительных работ в 1937 году был демобилизован и до июня 1941 года работал главным инженером Ессентукского управления «Водоканал». В годы Великой Отечественной войны Г. М. Шубников занимал различные командные должности. В 1946–1949 годы был начальником 23-го Управления Военно-полевого строительства. Часть, которой командовал Г. М. Шубников, восстанавливала, стоящие и поныне мосты через канал в Берлине, через реки Одер (в городах Франкфурт, Кострин), Вислу, Шпрее, пролив Штральзунд и другие; строила ряд административных и культурных зданий в Берлине (здание театра и советское посольство), памятники погибшим советским воинам, в том числе и знаменитый памятник Воину-освободителю в Трептов-парке. В 1955 году был назначен начальником строительства полигона Тюра-Там. 98 Такыр – форма рельефа, образующаяся при высыхании неглубоких озер. Такыры характерны, в первую очередь, для полупустынь и пустынь. 99 Дата 2 июня Приказом министра обороны СССР № 00105 от 3 августа 1960 года установлена как годовой праздник полигона НИИП-5 МО (Тюра-Там). 100 А. И. Нестеренко был назначен первым начальником ракетного полигона Тюра-Там, а первым начальником «космодрома Байконур» стал в 1958 году генерал-майор Константин Васильевич Герчик. 101 Позднее инженер-полковник А. А. Ниточкин был главным инженером объекта «Ангара», известного ныне как космодром Плесецк. 102 Скрепер – землеройно-транспортная машина, предназначенная для послойного копания грунтов, транспортирования и отсыпки их в земляные сооружения слоями заданной толщины. Кроме того, при движении по насыпи скреперы своими колесами уплотняют отсыпанные слои грунта, благодаря чему сокращается потребность в специальных уплотняющих машинах. 103 Шпур – искусственное цилиндрическое углубление в горной породе или бетоне диаметром до 75 мм и глубиной до 5 м. Создаются и применяются для размещения зарядов при взрывных работах, для установки крепи, нагнетания воды или цемента в окружающий массив горных пород. 104 Неделин, Митрофан Иванович (1902–1960) – советский военачальник. На военной службе с 1920 года. Службу в Красной армии начал рядовым, затем стал командиром отделения и политбойцом. Участвовал в боях во время советско-польской войны 1920 года, при ликвидации Тамбовского восстания 1920–1921 годов и басмачества в Средней Азии в 1922 году. С 1923 года служил в артиллерийских частях, с 1925 года – политрук батареи, затем – полковой школы. В 1929–1937 годах – командир батареи и дивизиона, начальник штаба артиллерии полка. В 1937–1939 годах участвовал в национально-революционной войне в Испании, по возвращении – командир артиллерийского полка, затем – начальник артиллерии стрелковой дивизии. В апреле 1941 года назначен командиром 4-й артиллерийской истребительно-противотанковой бригады. С этой бригадой в начале Великой Отечественной войны вступил в боевые действия с противником на Южном фронте. С лета 1943 года и до конца войны командовал артиллерией Юго-Западного (3-го Украинского) фронта. После войны М.И. Неделин занимал командные должности, в 19521953 годы – заместитель военного министра СССР по вооружению. С 1955 года – заместитель министра обороны СССР по специальному вооружению и ракетной технике, с декабря 1959 года – Главнокомандующий Ракетных войск стратегического назначения в звании главного маршала артиллерии. М. И. Неделин активно занимался созданием и организацией нового вида вооруженных сил. Под его руководством были разработаны и испытаны первые образцы межконтинентальных баллистических ракет.. 105 ВЧ-связь – система «закрытой» телефонной связи, использующая высокие частоты (ВЧ); была организована в 1930-е годы как оперативная связь органов ОГПУ. Впоследствии ею стали пользоваться также высшие гражданские и военные чины. Во время Великой Отечественной войны ВЧ-связь служила для соединения с командованием фронтов и армий. Аппараты ВЧ были установлены в высших партийных и правительственных учреждениях Москвы, республиканских, краевых и областных центров СССР, в также в советских посольствах. 106 Название взято не с «потолка» – пассажирские поезда из Москвы в Тюра-Там уходили с Казанского вокзала. 107 Название Байконур (с казахского Байкрцыр – плодородная земля) городу было присвоено официально 20 декабря 1995 года Указом Президента Республики Казахстан. Вместе с комплексом космодрома Байконур арендован Россией на период до 2050 года. Население – около 60 тыс. человек. 108 Первый летный образец «Р-7» был пятым ракетным «пакетом», собранным на Опытном заводе ОКБ-1 в Подлипках. Предыдущие четыре изделия были использованы при стендовых испытаниях, включая два прожига «пакета» на стенде ИС-102 в Загорске 20 февраля и 30 марта 1957 года. 109 МБР – межконтинентальная баллистическая ракета, 8К71 – индекс ГРАУ (индекс заказывающего управления Министерства обороны: 8К – баллистические ракеты, 8К7 – ракеты ОКБ-1), № 5Л – заводской номер ракеты, М1-5 – полигонный номер ракеты с присоединенной головной частью. 110 Интегратор – датчик «кажущейся» скорости, чувствительный прибор типа маятника, регистрирующий ускорение и интегрирующий значения ускорения в значения скорости. Интеграторы являются важнейшими элементами инерциальных систем управления. 111 Государственная комиссия по проведению летных испытаний межконтинентальной ракеты «Р-7» была утверждена Советом Министров 31 августа 1956 года в составе председателя Военно-промышленной комиссии В. М. Рябикова (председатель), главного маршала артиллерии М. И. Неделина (заместитель председателя), С. П. Королёва (технический руководитель), В. П. Бармина, В. П. Глушко, В. И. Кузнецова, А. Г. Мрыкина, Н. А. Пилюгина, М. С. Рязанского (заместители технического руководителя), С. М. Владимирского (заместитель председателя Госкомитета по радиоэлектронике), А. И. Нестеренко, Г. Н. Пашкова, И. Т. Пересыпкина (министр связи СССР) и Г. Р. Ударова (заместитель председателя Госкомитета оборонной техники). 112 Рябиков, Василий Михайлович (1907–1974) – советский инженер, военачальник. Рабочую карьеру начал в 17 лет на ткацкой фабрике «Большевик», занимался активной общественной деятельностью. В конце 1920-х годов был направлен на учебу в Ленинградский технологический институт, затем был переведен в Механический институт. С 1933 года в Красной Армии. В 1937 году окончил Ленинградскую военно-морскую академию. Стал работать инженером-конструктором на заводе «Большевик». В 1939 году В. М. Рябиков был назначен заместителем народного комиссара вооружения и в следующем году стал 1-м заместителем. В 1951–1953 годах был начальником 3-го главного управления при Совете министров СССР, занимался созданием советских зенитных ракет, в 1953–1955 годах – заместитель министра среднего машиностроения СССР, в 1955–1957 годах – председатель Специального комитета при Совете министров СССР, затем заместитель председателя Комиссии Президиума Совета министров СССР по военно-промышленным вопросам. Был председателем Госкомиссии по испытаниям первой межконтинентальной ракеты и запуску первого искусственного спутника Земли. В 1958–1961 годах – заместитель предателя Совета министров РСФСР. В 1962–1965 годах – первый заместитель председателя Совета народного хозяйства СССР. С 1966 года – генерал-полковник инженерно-технической службы. 113 День запуска первой ракеты «Р-7» совпал с 15-й годовщиной первого полета ракетного самолета «БИ-1» – 15 мая 1942 года на аэродроме Кольцово под Свердловском. Многие участники тех исторических испытаний присутствовали и на первом запуске «Р-7». Всего за 15 лет был пройден путь от маленького самолета с миниатюрным однокамерным двигателем до межконтинентальной баллистической ракеты, способной выводить грузы в космос. 114 Цена ракет, разумеется, не включает в себя стоимость полигона. В начале строительства его общая стоимость оценивалась в 500 миллионов рублей (в ценах 1955 года). С учетом денежных реформ и изменения покупательной способности рубля полигон Тюра-Там с одной стартовой площадкой обошелся в 5 миллиардов современных рублей. 115 Самым серьезным конкурентом С. П. Королёву был главный конструктор М. К. Янгель ОКБ-586, ушедший из НИИ-88 в 1954 году. Конкуренцию составлял и глава ОКБ-52 В. Н. Челомей. Оба они склонялись к конструированию баллистических ракет на высококипящих компонентах топлива, позволяющих длительное время хранить ракету в заправленном состоянии, что больше соответствовало требованиям военных. 116 Седьмого декабря 1941 года японская авиация совершила нападение на базу Тихоокеанского флота США в Перл-Харборе, что послужило поводом для вступления Соединенных Штатов во Вторую мировую войну.