Оценить:
 Рейтинг: 3.5

Фау-2. Сверхоружие Третьего рейха. 1930-1945

Год написания книги
2011
<< 1 2 3 4 5 6 7 >>
На страницу:
6 из 7
Настройки чтения
Размер шрифта
Высота строк
Поля

Баки из легких сплавов имели такие прочные стенки, что они выдерживали давление до 20 килограммов на квадратный сантиметр. Стартовый вес ракеты составлял 750 килограммов. За сорок пять секунд двигатель потреблял 1,5 тонны топлива, и скорость истечения газов составляла 1860 метров в секунду. В нижнем конце ракеты располагались четыре длинных узких стабилизатора, выступавшие примерно на 20 сантиметров, прикрепленные к пластмассовому кольцу диаметром 254 сантиметра. Оно должно было предотвращать колебания рулей и обеспечить стабильность полета. Витки медной антенны, соединенные с кольцом, контролировали аварийную отсечку старта. Ракета надежно опиралась четырьмя стабилизаторами на пластиковую поверхность стартового стола. Стол был снабжен целым рядом штекеров для связи с ракетой постов наблюдения и измерений в блиндажах. Через них же подавалось электрическое напряжение, снимались показания с вращающихся частей и клапанов. Когда ракета поднималась, эти контакты отсоединялись, и ракета следовала своим путем полностью в автоматическом режиме.

Ожидая наш первый запуск с Грейфсвалдер-Ойе, я мысленно возвращался к тому долгому пути, который мы прошли, – от начала работы армейской испытательной станции Пенемюнде до сегодняшнего первого старта. Как мы радовались, услышав о покупке Пенемюнде! Это означало, что мы сделали большой шаг от замыслов и мелких операций к полномасштабному планированию, а от него – к успеху.

Спустя несколько дней после визита генерала Фрича в марте 1936 года я сидел с фон Брауном и Риделем в Куммерсдорфе. Мы изучали планы проекта Пенемюнде и обсуждали, где на восточном берегу разместить испытательные стенды. В то же время мы прикидывали, что в северной части участка можно поставить испытательные стенды для действительно крупных двигателей и для ракет в полной сборке.

Ракета «А-3», над которой мы тогда работали, не предназначалась для полезного груза. Она имела чисто экспериментальный характер. Поскольку мы по-прежнему клянчили деньги на продолжение работ у армейского начальства, нам было сказано, что средства будут выделяться только на ракеты, способные нести большой груз на большое расстояние и точно поражать цель. Полные молодого рвения, мы охотно обещали выполнить все, о чем нас просили, не подозревая, на какие трудности себя обрекаем.

Мы спорили о размерах самого двигателя и испытательного стенда для него. Фон Браун и Ридель уже думали о действительно большой ракете, и я тоже обзавелся темой для размышлений. Я имел дело с тяжелой артиллерией. Ее высшим достижением была огромная «парижская пушка» времен Первой мировой войны. Она стреляла на 128 километров 210-миллиметровыми снарядами, каждый из которых нес 10,5 килограмма мощной взрывчатки. На первых порах я представлял себе большую ракету как способ послать тонну взрывчатки на расстояние 260 километров. Когда я сравнил огромный вес «парижской пушки» и трудности с доставкой ее по железной дороге на огневую позицию со сравнительно небольшим весом оборудования для запуска даже большой ракеты, когда я сравнил количество взрывчатки и ее эффективность, мне стало ясно, что военное применение ракет ждет блестящее будущее – при условии, что они будут обладать куда большей точностью попадания, чем снаряды из «парижской пушки».

Обсуждение переходило от одной темы к другой. Вскоре мы пришли к соглашению, что вес полезного груза должен составлять одну тонну. Примерные подсчеты показали, что при угле возвышения 45 градусов при входе в практически безвоздушное пространство и при максимальной скорости 2100 километров в час ракета может покрыть расстояние 275 километров.

Мы решили двигаться вперед, имея на руках первый предварительный набросок проекта. Я обговорил ряд чисто военных требований, в том числе характер рассеяния при стрельбе и приемлемое отклонение от цели. Требования были куда выше, чем в артиллерии.

Я внес ограничения по предельным размерам ракеты, настояв, что, поскольку нам придется транспортировать ее в собранном виде, она не должна превышать максимальной ширины, допустимой для транспортного средства. При доставке по железной дороге ракета должна проходить под сводом всех железнодорожных туннелей. Эти требования обусловили ее основные параметры. С самого начала мы пришли к согласию, что вытянутые обводы уменьшат сопротивление воздуха и увеличат дальность. Тем не менее практические соображения потребовали более надежного корпуса. Искать идеальные обводы предстояло инженерам.

Мы исходили из того, что тяга ракетного двигателя будет от 25 до 30 тонн. Мы могли сконструировать испытательный стенд номер 1, исходя из этих показателей, но, поскольку не рассчитывали каждый год строить новые и более крупные испытательные стенды, решили первый же стенд построить таким, чтобы на нем можно было бы испытывать любой мотор с тягой до 100 тонн.

Конструкторское бюро под руководством Риделя начало работу над нашей первой крупной ракетой. Через несколько недель определились основные очертания «А-4». Мы прикидывали, что ее стартовый вес будет равен 12 тоннам. Для того чтобы добиться тяги примерно 25 тонн и времени горения шестьдесят пять секунд и предполагая, что скорость истечения газов составит около 2000 метров в секунду, требовалось, как минимум, 8 тонн горючего. Таким образом можно было обеспечить максимальную скорость 1,6 километра в секунду. Но при такой скорости было совершенно необходимо рассчитать время отсечки топлива с точностью до доли секунды. Кроме того, необходимо было найти способ противостоять боковому отклонению ракеты. При диаметре более 1,5 метра ракета должна иметь высоту не менее 14 метров. Диаметр окружности над стабилизаторами не превышал 3,5 метра.

Я обсудил первый набросок конструкции с фон Брауном и Риделем. Мы были слегка растеряны, поскольку нас ждала масса новых проблем и мы прекрасно понимали, что этот шаг был несколько амбициозен. Кроме того, мы подозревали, что потребуются годы, дабы разработать оптимальную форму такой ракеты, которая превзойдет по скорости все имеющиеся летательные аппараты. Необходимо было провести испытания на сверх– и гиперзвуковой скорости в аэродинамической трубе, но ни одна из существующих даже не приближалась к нужным нам параметрам. Необходимо было изменить систему подачи горючего – от подачи под давлением перейти к насосам; а вес баков, достаточный, чтобы противостоять растущему давлению, был слишком велик. К тому же мы не знали, имеются ли достаточно легкие насосы. Да и вообще не существовало насосов, которые могли гнать жидкий кислород температурой минус 185 градусов по Цельсию. И как их заставить действовать? С помощью газовой турбины? В таком случае как она будет работать – с помощью выхлопных газов из камеры сгорания или же они будут поставляться каким-то иным путем? Не было и инструментов, способных с достаточной точностью измерять скорость воздуха, чтобы можно было отключиться точно в нужный момент. И на первых порах казалось, что мы безнадежно утонули в болоте неразрешимых проблем.

В июле 1936 года доктор Херманн сообщил нам неблагоприятные результаты испытаний стабильности первой модели «А-3» в аэродинамической трубе в Ахене и объяснил все трудности поиска правильной формы стабилизаторов для ракеты стреловидной формы на сверхзвуковой скорости. Теперь мы пришли к выводу, что двигаться вперед придется осторожно, шаг за шагом.

Прежде чем продолжить конструирование «А-4», придется дождаться результатов запусков «А-3». Нам хотелось, работая над «А-4», использовать методы, которые привели к успеху с ракетами поменьше. Прежде всего надо подобрать двигатель. И для начала выяснить, возможно ли построить камеру сгорания с тягой такой мощи и заставить ее работать определенное время. А также подумать, как вообще улучшить работу наших двигателей.

Так что мы полностью отложили проект «А-4». Однако решили обзаводиться оборудованием, нужным для размаха наших планов. Конструирование контрольных механизмов и отдельных компонентов должно идти параллельно; все они в целях экономии будут испытываться на ракетах меньших размеров. И это позволит использовать весь опыт, который мы надеялись обрести на предстоящих стартах, – если получится, то и для «А-3».

Поскольку мы собирались заняться большим 25-тонным двигателем, как только в Пенемюнде закончится возведение первого испытательного стенда, то сразу же заказали выхлопные дюзы – необходимая предосторожность, учитывая трудности производства и долгие сроки доставки. Когда через восемнадцать месяцев мы все же их получили, то к тому времени уже добились такого прогресса, что собранный двигатель для «А-4» был всего лишь вдвое длиннее, чем выхлопные дюзы, заказанные осенью 1936 года.

Успехи в конструировании двигателя были главным образом обязаны трудам доктора Вальтера Тиля, который стал работать на экспериментальной станции «Запад» осенью 1936 года, хотя фон Браун и Ридель тоже внесли много идей. Продолжатель дела доктора Вамке в исследова– тельском отделе управления вооружений сухопутных сил, доктор Тиль продолжил базовые исследования. Из его работ исходили важные решения относительно подбора лучшей смеси, эффекта неполного сгорания, оптимальной формы двигателя и выбора горючего.

Тиль, хрупкий бледнолицый человек среднего роста, с темными глазами за стеклами очков в черной роговой оправе, с гладко зачесанными назад густыми волосами и упрямым подбородком, всего себя отдавал работе. Его исследования отличали добросовестность и аккуратность. Изредка посещая его кабинет, я всегда очень высоко оценивал и его самого, и его методы работы. Он с удовольствием принял наше предложение к совместной работе и перешел от теоретических исследований непосредственно к конструированию. При создании 25-тонного двигателя он полностью отвечал за силовую установку.

Стараясь добиться полного сгорания топлива прежде, чем оно достигнет дюз, мы удлинили камеру сгорания. Анализ газов реактивной струи доказал, что мы были правы. Но в целом работа двигателя не улучшилась. До сих пор мы подавали под сильным давлением навстречу друг другу слишком плотную струю топлива и кислорода. Жесткий контакт испарял их, и сгорание смеси происходило по всей длине камеры, хотя в разных местах ее смесь обладала разной консистенцией. То есть горение не было однородным, и мы не могли предотвратить прогорание стенок камеры. Каждая ее новая конструкция страдала тем же пороком.

Я предложил, что мы должны достичь очень высокого уровня распыления – чуть ли не до атомов – отдельных частей горючей смеси, которая и будет поджигаться после смешивания. И в том случае, если будет правильно подобран состав смеси, это позволит ускорить горение, уменьшить длину камеры сгорания и улучшить работу двигателя в целом.

Доктор Тиль принялся разрабатывать эту идею. Он нашел способ использования специальных центробежных форсунок. Через несколько дней он продемонстрировал свою систему зажигания, и я убедился, что он нашел решение проблемы. Он предоставил ее для исследований инженерным колледжам и институтам и в то же время приспособил ее для 1,5-тонного двигателя. Через год работы ему удалось уменьшить длину камеры сгорания от почти 1,8 метра до 0,3 метра. Теоретически максимальная скорость выброса газов могла достигать 2250 метров в секунду. Таким образом мы добились заметных успехов в конструировании двигательной установки.

Но одна проблема продолжала доставлять нам серьезную головную боль. Улучшенное сгорание вызывало рост температуры, охлаждающая рубашка выходила из строя, и мы опять сталкивались со старыми проблемами охлаждения. Я предложил придать коническую форму той цилиндрической части камеры сгорания, где в нее входили дюзы. Эксперимент оказался успешным, и в этом месте стенки камеры больше не прогорали.

1,5-тонная камера сгорания давала прекрасные результаты, даже когда мы ждали максимальных показателей в 16 килограммов на квадратный сантиметр. Мы не собирались превышать эти пределы. Мы, конечно, знали, что можем довести давление до 52 килограммов на квадратный сантиметр, но такого рода повышение давления не влекло за собой заметного улучшения работы двигателя. При этом оно требовало соответствующего увеличения веса мотора и баков. Недостатки сводили на нет преимущества. Так что мы предпочитали поддерживать давление в камере сгорания на уровне 16 килограммов на квадратный сантиметр.

Вскоре доктор Тиль сконструировал 4,5-тонный двигатель. Три головки впрыскивания с 1,5-тонной камеры он, меняя их расположение, разместил над камерой сгорания. Новый подход принес успех, обеспечив высокие технические характеристики работы.

Тем не менее время от времени двигатель все же прогорал – или в разных точках стенок, или в месте входа форсунок. Инженер Пюльман, коллега доктора Тиля, внес дельное предложение. А что, если проложить слой изоляции между стенками и жаром камеры сгорания? Если оросить ее внутренние стенки спиртом, то он, конечно, испарится и сгорит, но температура этого слоя никогда не будет равна той, что существует внутри камеры. Так появилась на свет охлаждающая пленка. Большое количество крохотных отверстий у наиболее уязвимых частей под небольшим давлением подавали к ним спирт. Отверстия в стенках заполнялись металлом Вуда, который тут же плавился, едва только появлялось пламя, обеспечивая доступ охлаждающему спирту.

Наконец мы впервые добились надежной работы.

Когда мы позже обсуждали конструкцию и систему зажигания 25-тонного двигателя для «А-4», фон Браун предложил разместить восемнадцать однотипных форсунок в головной части камеры. Все восемнадцать, созданные доктором Тилем для 1,5-тонной камеры, были размещены в два концентрических круга. Так мы создали систему зажигания для большой камеры, которая доставила нам много хлопот. Во время огневых испытаний первой большой камеры, которые прошли весной 1939 года на испытательном стенде номер 1 в Пенемюнде, она имела эту систему.

В Куммерсдорфе доктор Тиль первым рискнул использовать для стенок камеры сваренные стальные листы толщиной 25 миллиметров вместо алюминия, который ранее шел в ход исключительно для больших камер. Он начал экспериментировать с ними, проверяя и в барокамере и на сопротивляемость высокому давлению в камере сгорания. Вместе с ним работали первоклассные инженеры, среди которых были такие специалисты, как Шлурике и Пюльман. Они оказывали ему большую помощь практическими советами.

Работать с доктором Тилем было нелегко. Он всецело отдавался работе, но был исключительно честолюбив и озабочен, ценят ли его по заслугам. Он ждал высоких оценок со стороны начальства и требовал от коллег полной преданности делу. Мне не раз приходилось сглаживать трения между ними.

В мае 1937 года мы смогли перевести в Пенемюнде большую часть сотрудников из Куммерсдорфа, число которых уже приближалось к сотне. Но испытательные стенды в Пенемюнде еще не были готовы к работе. Поэтому доктор Тиль, как глава отдела двигательных установок, в компании пяти ассистентов и нескольких механиков оставался в Куммерсдорфе. Лишь летом 1940 года он появился в Пенемюнде, где и возглавил все экспериментальные работы.

А тем временем нам повезло обзавестись для нашего проекта еще одной очень хорошей головой. В разговорах со мной фон Браун снова и снова подчеркивал, как важно иметь аэродинамическую трубу конструкции доктора Херманна для испытаний на «сверхзвуке». Я соглашался, но меня пугала ее стоимость – не менее 300 тысяч марок. Я обладал немалым опытом строительства, чтобы понимать: удержаться в этих пределах ни в коем случае не удастся, особенно если за дело возьмется фон Браун. Такая аэродинамическая труба обойдется, скорее всего, в миллион марок.

В конце сентября 1936 года, когда доктор Херманн наконец сообщил из Ахена, что испытания в аэродинамической трубе доказали стабильность хвостовых стабилизаторов третьей модели «А-3», я все же решил строить собственную трубу, сколько бы она ни стоила. Повидавшись с Бекером, я изложил ему свой замысел, особо подчеркнув, что такая конструкция нам жизненно необходима. Он спросил, сколько это может стоить. Когда я назвал сумму, он посерьезнел. Наконец согласился, но поставил условие: как минимум, еще один отдел из двенадцати в управлении вооружений сухопутных войск должен проявить интерес к возведению такой аэродинамической трубы и согласиться использовать ее. Я решил, что добиться такого согласия для меня будет несложно. Я был твердо убежден, что использование сверхзвуковой аэродинамической трубы позволит свести к абсолютному минимуму время, потраченное на метод проб и ошибок. Ведь на его основе работали и баллистики и авиаторы, которым позарез была нужна аэродинамическая труба.

Но при встрече с руководителями этих отделов я не услышал ничего, кроме отказов. Даже отдел баллистики и боеприпасов не проявил интереса, чтобы у отдела вооружений сухопутных войск появилась собственная аэродинамическая труба. Они не изменили своего отношения, даже когда я пообещал, что испытания в трубе помогут увеличить дальность стрельбы обыкновенного орудия самое малое на 20 процентов лишь за счет изменения формы снаряда.

Наконец остался единственный отдел, куда мне предстояло зайти, – зенитной артиллерии. Я знал его начальника. Именно он и оказал мне поддержку, в которой я так нуждался. Бекер согласился сотрудничать, и проект пенемюндской сверхзвуковой аэродинамической трубы, которая, предполагалось, по своим размерам и мощности станет самой эффективной в мире, начал обретать очертания в лесах острова Узедом. Нам удалось убедить доктора Херманна, и 1 апреля 1937 года он присоединился к нам.

Хотя данные, которые он сообщил нам в конце сентября 1936 года, дали возможность ускорить конструирование и строительство «А-3», прошел год, прежде чем мы смогли провести настоящие «огневые испытания». Наше время целиком было занято статическими испытаниями, улучшениями и проверками клапанов, проверками собранной ракеты с системой управления и без нее, испытаниями парашютов, созданием молибденовых рулей управления, установкой направляющих и подготовкой на Ойе.

Наконец к декабрю 1937 года мы были готовы к запуску «А-3», но… результатом наших лет работы стал полный провал.

В чем же крылась ошибка? Отчеты очевидцев из числа сотрудников резко противоречили друг другу. Каждый видел что-то совершенно иное. Мы решили рискнуть и провести второй запуск. С маяка я наблюдал, как вторая ракета оторвалась от земли. И все повторилось. Вскоре после старта ракета заметно отклонилась от продольной оси, повернула по ветру и, поднявшись на несколько сотен метров, выкинула парашют. Горение в двигателе прекратилось, и ракета упала в море рядом с крутым восточным берегом острова.

Изучая собранные обломки, мы никак не могли определить причину неудачи. Может, все дело было в парашюте? Какая-то ошибка в его выбросе?

Мы решили снять парашют со следующих двух ракет. И тут на остров внезапно спустился туман такой густой, что в паре шагов ничего не было видно. Он висел несколько дней. Сидя в гостинице, мы часами вели дискуссии. У каждого была своя собственная теория. Наконец я принял решение, что мы должны исключать возможные причины неудачи одну за одной. Начиная с парашюта.

Но вот свежий ветер разогнал туман. Сводки погоды сообщали, что в ближайшие несколько дней могут быть дожди, снег, сильный ветер и внезапное похолодание. Приходилось спешить. Но и результаты следующих двух запусков были не лучше. Сразу же после старта ракета, изо всех сил сопротивляясь порывам ветра, как-то еще выдерживала направление, но на высоте 750 – 1000 метров перевертывалась и падала в море.

Мы поняли, что у системы управления недостаточно мощи противостоять аэродинамическим силам. Когда дул северо-восточный ветер со скоростью 8 метров в секунду, ракета с самого старта была обречена.

Мы вели расчеты и проводили испытания. Выяснилось, что даже при боковом ветре 3,6 метра в секунду система была слишком слаба, чтобы восстановить равновесие и предотвратить отклонение ракеты от продольной оси. Не поспевали реагировать и рули управления. Контрольное устройство развивало недостаточное давление за период в 2,8 секунды. Мы должны были, если получится, увеличить его в десять раз и, соответственно, скорость реакции рулей.

Когда во второй половине дня мы на катерах вышли в устье Пене, уже начинало темнеть. Усилился ледяной северо-западный ветер, высокие черные волны перекатывались через палубу и захлестывали надстройки. За пеленой снега с дождем почти ничего не было видно. Мы были усталыми и измотанными – но надежда нас не покинула. Несмотря на все неудачи, мы продолжали хранить уверенность в грядущих успехах.

Последующие дни и недели были посвящены дискуссиям, которые проходили в конференц-зале конструкторского корпуса экспериментальной станции сухопутных войск. Нам предстояло определить, каким должен быть следующий шаг. Наконец мы приняли решение оставить работу над «А-3» и, прежде чем продолжить создание «А-4», заняться новой ракетой, «А-5». Она получила в свое распоряжение испытанный ракетный двигатель с «А-3», но диаметру новой ракеты предстояло увеличиться на 10 сантиметров, хотя общая длина ее осталась той же самой. Кроме того, ракета имела принципиально новую систему управления. Мы не предполагали, что «IKreiselgerate» в ближайшем будущем успеет модернизировать ее. Поэтому для начала мы решили установить более мощную технику производства фирмы «Сименс», которая была создана всего несколько месяцев назад. Кроме того, ракета имела приемное устройство, которое получало сигналы для отсечки топлива и выброса парашюта. Была улучшена и поверхность хвостовых стабилизаторов, которые в соответствии с данными последних испытаний в аэродинамической трубе стали короче.

Хвостовое оперение уже не имело круговой антенны, но стабилизаторы стали шире, и они под углом выходили из-под дюз. Новая конструкция основывалась на следующих соображениях: «А-3» и «А-5» имели один и тот же двигатель, и давление газов на выходе составляло одну атмосферу, что соответствовало давлению воздуха на уровне моря. Но мы рассчитывали достичь куда больших высот. Давление воздуха на них соответственно уменьшалось, и выброс обретал конусообразную форму. В результате старые стабилизаторы старой конструкции могли заняться пламенем. Более того, поверхность новых стабилизаторов встречала меньшее сопротивление воздуха, чем у старых, и таким образом мы предполагали достичь скорости звука.

Надежность «А-5» с новыми хвостовыми поверхностями была проверена под наблюдением доктора Шримера сначала в аэродинамической трубе авиастроительной фирмы Цеппелина в Фридрихсгафене, а потом еще раз – в сверхзвуковой трубе в Ахене. После этого начался последний этап работы над «А-5», и через несколько недель в мастерских Пенемюнде на свет появился первый экспериментальный образец.

Главным образом я старался сократить период между запусками малой экспериментальной серии и отдал приказ, чтобы производство «А-5» выросло до десяти образцов в месяц. Мы продолжали надеяться, что эти ракеты смогут преодолеть звуковой барьер. Основной вопрос был в том, смогут ли растущее сопротивление воздуха и смещение центра тяжести вызвать такую мощную вибрацию, от которой ракета разлетится на куски. В то время еще не проводилось никаких испытаний в аэродинамической трубе даже на звуковой скорости и ни один корпус со стабилизаторами не мог обрести надежность в полете на «сверхзвуке» без того, чтобы не разрушиться. Нам оставалось лишь сбрасывать модели «А-5» с самолета на большой высоте и смотреть, что произойдет.

Мы сделали несколько надежных металлических моделей диаметром примерно 20 сантиметров и длиной 1,5 метра. Весили они около 250 килограммов и несли несколько типов хвостового оперения. Мы снабдили их дымовыми шашками и фальшфейерами. В сентябре 1938 года начались эксперименты по сбросу этих моделей с высоты 6000 метров, куда нас доставлял «Не-111». Траектория полета фиксировалась фото– и кинотеодолитами. На высоте около 900 метров «бомба» достигала максимальной скорости – 1200 километров в час, что превышало скорость звука.

Результат нас устроил. Ни разу размах вибраций не превышал 5 градусов. Кроме того, мы разработали тормозной парашют, который открывается на пике траектории, если скорость ракеты не превышает 400 километров в час. Парашют был способен, оставаясь целым, сбрасывать эту скорость до 145 километров в час. Авиационный исследовательский институт графа Цеппелина в Штутгарте создал для нас ленточный парашют. Мы снабдили «А-5» двумя парашютами: одним ленточным для торможения и одним большим для поддержки, который после торможения спокойно опускал ракету на землю на скорости 4,5 метра в секунду. Нам была нужна уверенность, что ракета не разлетится при столкновении с землей или водной поверхностью, дабы, найдя ее неповрежденной, мы в случае неудачи могли бы определить ее причину.

Мы повторяли эксперименты, сбрасывая с самолета модели ракет, но на этот раз со встроенными парашютами.

Недавно пришедший к нам техник-чертежник в Куммерсдорфе предложил использовать графитовые газовые рули вместо дорогих молибденовых. Доктор Тиль принял это предложение и провел несколько успешных испытаний. Цена за набор рулей снизилась со 150 марок до 1,5 марки, и на «А-5» был поставлен графит.
<< 1 2 3 4 5 6 7 >>
На страницу:
6 из 7