Оценить:
 Рейтинг: 0

Концепции современного естествознания

Год написания книги
2015
<< 1 ... 11 12 13 14 15
На страницу:
15 из 15
Настройки чтения
Размер шрифта
Высота строк
Поля

К настоящему времени известно множество естественных наук, отражающих различные свойства объектов природы. Их классификация и иерархия всегда интересовали ученых. Одну из первых классификаций провел в начале XIX в. французский физик А. Ампер (1775–1836). Уже тогда общее число естественных наук составляло более 200. Естественно-научные знания он представил в виде единой системы, состоящей из различных по характеру идей и экспериментальных сведений. В такой системе физика располагалась на первом уровне как наука наиболее фундаментальная, химия – на втором, как бы основывающаяся на физике, и т. д.

Позднее – в середине XIX в., – изучая историю развития естествознания, немецкий химик Ф. Кекуле (1829–1896) предложил свою иерархию естественных наук в форме четырех последовательных ступеней: механика, физика, химия, биология. В ней рассматривались молекулярная физика и термодинамика как механика молекул, химия – как физика атомов, а биология – как химия белков или белковых систем.

Вопросы иерархии, классификации и взаимосвязи естественных наук обсуждаются и по сей день. При этом рассматриваются разные точки зрения. Например, одна из них – все химические явления, строение вещества и его превращение можно объяснить на основании физических знаний – ничего специфического в химии нет. Другая точка зрения – каждый вид материи и каждая форма материальной организации (физическая, химическая, биологическая) настолько специфичны и обособлены, что между ними нет прямых связей. Конечно, такие полярные точки зрения далеки от истины. Вполне очевидно: несмотря на то, что физика – фундаментальная отрасль естествознания, каждая из естественных наук при одной и той же общей задаче изучения природы имеет свой объект исследования и базируется на своих законах, не сводимых к законам других отраслей науки. Сочетание всесторонних знаний, накопленных в течение длительного времени в отдельных отраслях естествознания, способствует дальнейшему его развитию.

Возвращаясь к мысли, изложенной в начале этого параграфа, можно сказать: натурфилософия породила физику. Однако также определенно можно утверждать и другое: физика выросла из потребностей техники (например, развитие механики у древних греков было вызвано запросами строительной и военной техники того времени). Техника, в свою очередь, определяет направление физических исследований (так, задача создания наиболее экономичных тепловых двигателей стимулировала бурное развитие термодинамики). С другой стороны, от развития физики зависит технический уровень производства. Физические достижения – фундаментальная база для наукоемких технологий и новых технических средств производства.

Физика тесно связана и с философией. Такие крупные открытия, как закон сохранения и превращения энергии, второе начало термодинамики, соотношение неопределенностей и др., являлись и являются ареной острой борьбы между сторонниками разных философских течений. Научные открытия служат питательной средой для многих философских идей. Изучение открытий и их философское, концептуальное обобщение играют большую роль в формировании естественно-научного мировоззрения.

Основные этапы развития физики. Всю историю развития физики, как и естествознания, можно условно разделить на три основных этапа:

1) доклассической физики;

2) классической физики;

3) современной физики.

Первый этап развития физики – этап доклассической физики – иногда называют донаучным. Однако такое название нельзя считать обоснованным: фундаментальные зерна физики и естествознания в целом были посеяны еще в глубокой древности.

Этот этап – самый длительный: он охватывает период от времени Аристотеля (IV в. до н. э.) до конца XVI в.

Начало второго этапа – этапа классической физики – связывают с работами итальянского ученого Г. Галилея, одного из основателей точного естествознания, и трудами английского математика, механика, астронома и физика И. Ньютона, основоположника классической физики. Второй этап длился около трех веков до конца XIX в.

К началу XX в. были получены экспериментальные результаты, трудно объяснимые в рамках классических знаний. Поэтому был предложен совершенно новый подход – квантовый, основанный на дискретной концепции. Квантовую гипотезу впервые ввел в 1900 г. немецкий физик М. Планк, вошедший в историю развития физики как один из основоположников квантовой теории. С введением квантовой концепции начинается третий этап развития физики – этап современной физики, включающий не только квантовые, но и классические представления.

Этап доклассической физики открывает геоцентрическая система мировых сфер Аристотеля, которая родилась на подготовленной его предшественниками идейной почве. Переход от эгоцентризма – отношения к миру, характеризующегося сосредоточенностью на своем индивидуальном «я», к геоцентризму – первый и, пожалуй, самый трудный шаг на пути зарождения ростков естествознания. Непосредственно видимая полусфера неба, ограниченная местным горизонтом, дополнялась аналогичной невидимой полусферой до полной небесной сферы. Мир стал более завершенным, но оставался ограниченным небесной сферой. Соответственно и сама Земля, противопоставленная остальной (небесной) сферической Вселенной как постоянно занимающая в ней особое, центральное положение и абсолютно неподвижная, стала считаться сферической. Пришлось признать не только возможность существования антиподов – обитателей диаметрально противоположных частей земного шара, но и принципиальную равноправность всех земных обитателей мира. Такие представления, носившие в основном умозрительный характер, подтвердились гораздо позднее – в эпоху первых кругосветных путешествий и великих географических открытий, т. е. на рубеже XV и XVI вв., когда само геоцентрическое учение Аристотеля с канонической системой идеальных равномерно вращающихся небесных сфер, сочлененных друг с другом своими осями вращения, с принципиально различной физикой или механикой для земных и небесных тел, доживало свои последние годы.

Почти полторы тысячи лет отделяют завершенную геоцентрическую систему древнегреческого астронома К. Птолемея (ок. 90–160) от достаточно совершенной гелиоцентрической системы польского математика и астронома Н. Коперника. В центре гелиоцентрической системы находится не Земля, а Солнце. Вершина гелиоцентрической системы – законы движения планет, открытые немецким астрономом И. Кеплером, одним из творцов естествознания Нового времени.

Астрономические открытия Г. Галилея, его физические эксперименты и фундаментальные законы механики, сформулированные И. Ньютоном, положили начало этапу классической физики, который нельзя отделить четкой границей от первого этапа. Для физики и естествознания в целом характерно поступательное развитие: законы Кеплера – венец гелиоцентрической системы с весьма длительной, начавшейся еще в древние времена историей; законам Ньютона предшествовали законы Кеплера и труды Галилея; Кеплер открыл законы движения планет в итоге логически и исторически естественного перехода от геоцентризма к гелиоцентризму, но не без эвристических идей аристотелевской механики. Механика Аристотеля разделялась на земную и небесную, т. е. не обладала надлежащим принципиальным единством: аристотелевское взаимное противопоставление Земли и Неба сопровождалось принципиальной противоположностью относящихся к ним законов механики, которая тем самым оказалась в целом внутренне противоречивой, несовершенной. Галилей опроверг аристотелевское противопоставление Земли и Неба. Он предложил представление Аристотеля об инерции, характеризующее равномерное движение небесных тел вокруг Земли, применять для земных тел при их свободном движении в горизонтальном направлении.

Кеплер и Галилей пришли к своим кинематическим законам, предопределившим принципиально единую для земных и небесных тел механику Ньютона. Законы Кеплера и закон всемирного тяготения Ньютона послужили основой для открытия новых планет. Так, по результатам наблюдений отклонений в движении планеты Уран, открытой в 1781 г. английским астрономом У. Гершелем (1738–1822), английский астроном и математик Д. Адамс (1819–1892) и французский астроном У. Леверье (1811–1877) независимо друг от друга и почти одновременно теоретически предсказали существование заурановой планеты, которую обнаружил в 1846 г. немецкий астроном И. Галле (1812–1910). Она называется Нептун. В 1915 г. американский астроном П. Ловелл (1855–1916) рассчитал и организовал поиск еще одной планеты. Ее обнаружил в 1930 г. молодой американский любитель астрономии К. Томбо. Эта планета получила название ПлуСтремительными темпами развивалась не только классическая механика Ньютона. Этап классической физики характеризуется крупными достижениями и в других отраслях: термодинамике, молекулярной физике, оптике, электричестве, магнетизме и т. п. Назовем важнейшие из них:

– установлены опытные газовые законы;

– предложено уравнение кинетической теории газов;

– сформулирован принцип равномерного распределения энергии по степеням свободы, первое и второе начала термодинамики;

– открыты законы Кулона, Ома и электромагнитной индукции;

– разработана электромагнитная теория;

– явления интерференции, дифракции и поляризации света получили волновое истолкование;

– сформулированы законы поглощения и рассеяния света.

Конечно, можно назвать и другие не менее важные достижения, среди которых особое место занимает электромагнитная теория, разработанная выдающимся английским физиком Дж. Максвеллом (1831–1879), создателем классической электродинамики, одним из основоположников статистической физики. Он установил, кроме того, статистическое распределение молекул по скоростям, названное его именем. Теория электромагнитного поля (уравнения Максвелла) объяснила многие известные к тому времени явления и предсказала электромагнитную природу света. С электромагнитной теорией Максвелла вряд ли можно поставить рядом другую более значительную в классической физике. Однако и эта теория оказалась не всесильной.

В конце XIX в. при изучении спектра излучения абсолютно черного тела была установлена закономерность распределения энергии. Полученные кривые распределения имели характерный максимум, который по мере повышения температуры смещался в сторону более коротких волн. Такие результаты эксперимента не удалось объяснить в рамках классической электродинамики Максвелла. Эта проблема была названа «ультрафиолетовой катастрофой».

Согласующееся с экспериментом объяснение предложил в 1900 г. М. Планк. Для чего ему пришлось отказаться от общепринятого положения классической физики о том, что энергия любой системы изменяется только непрерывно, т. е. принимает любые сколь угодно близкие значения. В соответствии с выдвинутой Планком квантовой гипотезой атомные осцилляторы излучают энергию не непрерывно, а определенными порциями – квантами, причем энергия кванта пропорциональна частоте.

Характерная особенность этапа современной физики заключается в том, что наряду с классическими развиваются квантовые представления, на основании квантовой механики объясняются многие микропроцессы, происходящие в пределах атома, ядра и элементарных частиц, – появились новые отрасли современной физики: квантовая электродинамика, квантовая теория твердого тела, квантовая оптика и многие другие.

В одной из своих статей М. Планк писал о том, как во времена его молодости (примерно в 1880 г.) один уважаемый профессор не советовал заниматься физикой, полагая, что в физике осталось только стирать пыль с существующих физических приборов, так как главное уже сделано. Сейчас очевидно: профессор в своих прогнозах ошибался – XX в. принес немало великих открытий в физике, определивших многие перспективные направления развития разных отраслей естествознания.

В формировании квантово-механических представлений важную роль сыграла квантовая теория фотоэффекта, предложенная А. Эйнштейном в 1905 г. Именно за эту работу и вклад в теоретическую физику, а не за теорию относительности, ему в 1921 г. была присуждена Нобелевская премия по физике.

В развитие современной физики существенный вклад внесли многие выдающиеся ученые, среди которых следует назвать датского физика Н. Бора (1885–1962), создавшего квантовую теорию атома, немецкого физика-теоретика В. Гейзенберга (1901–1976), сформулировавшего принцип неопределенности и предложившего матричный вариант квантовой механики, австрийского физика-теоретика Э. Шредингера (1887– 1961), разработавшего волновую механику и предложившего ее основное уравнение (уравне-ние Шредингера), английского физика П. Дирака (1902–1984), разработавшего релятивистскую теорию движения электрона и на ее основании предсказавшего существование позитрона, английского физика Э. Резерфорда (1871–1937), создавшего учение о радиоактивности и строении атома, и многих других.

В первые десятилетия XX в. исследовалась радиоактивность и выдвигались идеи о строении атомного ядра. В 1938 г. сделано важное открытие: немецкие радиохимики О. Ганн и Ф. Штрассман обнаружили деление ядер урана при облучении их нейтронами. Это открытие способствовало бурному развитию ядерной физики, созданию ядерного оружия и рождению атомной энергетики.

В исследовании ядерных процессов большую роль играют детекторы частиц, в том числе и черенковский счетчик, действие которого основано на Черенкова – Вавилова излучения света, которое возникает при движении в веществе заряженных частиц со скоростью, превосходящей фазовую скорость света в нем. Это излучение было обнаружено нашим соотечественником, физиком П.А. Черенковым (1904–1990), лауреатом Нобелевской премии 1958 г., под руководством академика С.И. Вавилова (1891–1951), основателя научной школы физической оптики.

Одно из крупнейших достижений физики XX в. – это, безусловно, создание в 1947 г. транзистора выдающимися американскими физиками Д. Бардиным, Д. Браттейном и У. Шокли, удостоенными в 1956 г. Нобелевской премии по физике. С развитием физики полупроводников и созданием транзистора зарождалась новая технология – полупроводниковая, а вместе с ней и перспективная, бурно развивающаяся отрасль естествознания – микроэлектроника. В 1958 г. собрана первая интегральная схема в виде пластины из монокристалла кремния площадью несколько квадратных сантиметров, на которой располагались два транзистора и RC-цепи. Современный микропроцессор размером 1,8 см содержит около 8 млн транзисторов. Если размеры элементов первых транзисторов составляли доли миллиметра, то сегодня они равны 0,35 мкм. Это современный технологический уровень. В последнее время разрабатывается технология формирования элементов нанометровых размеров.

Создание квантовых генераторов на основе вынужденного излучения атомов и молекул – еще одно важнейшее достижение физики XX в. Первый квантовый генератор на молекулах аммиака – источник электромагнитного излучения в СВЧ-диапазоне (мазер) – разработан в 1954 г. российскими физиками Н.Г. Басовым, А.М. Прохоровым и американским ученым Ч. Таунсом. В 1964 г. за эту работу им присуждена Нобелевская премия по физике. К настоящему времени разработано много модификаций квантовых генераторов, в том числе и оптических квантовых генераторов, называемых лазерами, получивших широкое практическое применение. Появились уникальные лазеры – химические, атомные и др., которые открывают перспективные направления лазерных технологий.


<< 1 ... 11 12 13 14 15
На страницу:
15 из 15

Другие электронные книги автора Степан Харланович Карпенков