Оценить:
 Рейтинг: 4.67

Диссертация: инструкция по подготовке и защите

<< 1 ... 5 6 7 8 9
На страницу:
9 из 9
Настройки чтения
Размер шрифта
Высота строк
Поля

Несколько отвлекаясь, скажем, что уровень метрологического обеспечения в большинстве наших лабораторий таков, что следует основательно подумать, прежде чем браться за исследование фактора, изменяющегося в пределах ±10 % от исходного уровня. Только необычайная важность задачи в сочетании с дотошной метрологической требовательностью могут оправдать такое исследование. К счастью, природа еще оставила и нашему поколению явления, изучение которых не требует «глубинного бурения» и может производиться методом «открытого карьера». Надо только найти эти явления, найти или приготовиться к мукам метрологических процедур.

Есть исследователи особого педантичного склада, которым доведение измерительной аппаратуры до немыслимой степени точности доставляет острое, почти физическое наслаждение. Осторожно! Погоня за восьмым знаком после запятой может заслонить от Вас поиск главного – «устойчивой существенной связи между предметами или явлениями материального мира» (примерно таково определение понятия научное открытие).

Приводя числовые значения, не злоупотребляйте знаками после запятой. Есть известные слова великого Гаусса (Karl Friedrich Gauss, 1777–1855) о том, что избыточная точность расчетов отчетливо указывает на недостаток математических знаний у их автора.

Все сказанное совсем не означает, что можно вообще избежать метрологических процедур. Даже если Вам повезло исследовать очень яркое явление, такое, при котором регистрируемый параметр отклоняется от исходных значений в полтора-два раза, Вы обязаны перед серией экспериментов и по ее окончании сравнить показания своих приборов с эталонными. Например, в любой хорошей статье, посвященной газоанализу, непременно сказано, что электронный газоанализатор, скажем фирмы Beckman, перед началом измерений и по их окончании был проверен по знакомому нам со студенческих времен прибору Холдена.

Технофетишизм

К Вам приходит уважаемый человек, представитель частной отечественной фирмы, специализирующейся на разработке и выпуске исследовательской аппаратуры. (Подвижник! Остальные торгуют дешевыми факсами и микроволновыми печами фирмы Bosch.) Этот человек – доктор наук (!) – ставит на Ваш стол небольшой прибор, просит закатать рукав и, наложив манжетки на плечо и концевую фалангу пальца, нажимает на две кнопки. Раздается шипение, и из микропринтера выползает лента, на которой указаны не только частота сердечных сокращений, систолическое и диастолическое артериальное давление (это бы еще что!), но также ударный объем и сердечный выброс плюс 33 «основных показателя гемодинамики». «Помилуйте, – говорите Вы, – но ударный объем-то – как?» – «А по осциллограмме, у нас есть программа, – и похлопывает по ящичку размером с коробку для сигар. – С Вас всего (сумма в рублях или евро). Министерству (название) продаем в 3,5 раза дороже». Ну как тут объяснить, что методы определения ударного объема и сердечного выброса по осциллограммам давно скомпрометированы в мире, что ни один метод их оценки не будет признан без сравнения с dye dilution – разведением красителя? Но ведь кто-то уже купил это чудо техники! И скоро на защите диссертации (хорошо, если кандидатской) мы услышим: «После проведения названных лечебных мероприятий минутный объем кровообращения возрос на 12,2 %, что говорит о…». А о чем это говорит? Да ни о чем! Гораздо надежнее было бы позвать опытного клинициста и спросить: «Учитель, больному лучше?» Ответ был бы точнее и ближе к истине, чем эти мифические 12,2 %.

Вот если бы разработчик прибора и врач-исследователь ограничились только измерением так называемых прямых показателей – частоты сердечных сокращений, артериального давления и т. п., но грех наукообразия завел их в определение бесчисленных индексов, производных и проч. и проч. Достаточно начать аргументировать свои выводы подобными производными, и Вы выходите из-под любой критики – и чужой, и собственной. Совет вообще промолчит, подавленный обилием цифр, которые нельзя ни с чем сравнить, а следовательно, и опровергнуть. Уход от критики с помощью эзотерических понятий – подарок артефакту и надругательство над истиной.

Выбор объекта исследования

Разумеется, объект исследования должен быть адекватным его задачам. Клиницисты выполняют это правило с легкостью: простатит изучают на больных с простатитом. Биологам-экспериментаторам надо помнить слова нобелевского лауреата 1920 года Августа Крога (August Krogh, 1874–1949) о том, что для каждого исследования есть наиболее подходящий вид животных (о Кроге см. в нашей книге: А. Марьянович, И. Князькин. Взрыв и цветение: Нобелевские премии по медицине 1901–2002. СПб., изд-е 2-е, 2003 и последующие издания).

Рандомизация и двойной слепой контроль

Следующее обязательное мероприятие – рандомизация. Начало эксперимента. Исследователь уже примерно (всегда – примерно и никогда – точно) знает, что он собирается делать. Экспериментальная установка готова. «Маша, принесите кролика!» Маша идет в виварий и приносит-таки кролика, но какого или, вернее, которого из тех, что там были? Если спросить об этом исследователя, он уверенно ответит, что животное было выбрано в случайном порядке. Неправильно! Выбор был сделан в произвольном порядке. Различие между этими двумя процедурами объясняется в начале любого хорошего руководства по биологической и медицинской статистике. Лаборантка взяла кролика из клетки, находящейся на полметра от пола вивария – это самые удобные клетки: к нижнему ряду труднее наклоняться, а кролик из верхней клетки, бывает, успевает царапнуть Вас задней лапой. Не все ли равно, где сидел кролик до эксперимента? Нет. Самых тяжелых или самых буйных животных лаборанты, не задумываясь, сажают в клетки нижних рядов – а это, согласитесь, нарушает принцип случайности выбора. Конечно, виварий может быть идеально организован: клетки на одном уровне, животные строго одного веса и т. п., но всегда найдется бесчисленное количество других факторов, препятствующих случайному выбору.

В тех же руководствах по статистике под названием рандомизация описаны элементарные процедуры, позволяющие обеспечить случайность выбора объекта. Если Вы собираетесь сравнить два способа лечения, Вы должны:

а) Определить и, насколько возможно, формализовать показания к применению этих методов, то есть заранее назвать нозологическую форму и, если необходимо, другие признаки будущих больных, которые подвергнутся лечению либо старым, либо новым способом: пол, возраст, и т. п. Любой больной, поступающий в клинику или отделение и соответствующий всем заранее определенным параметрам, автоматически попадает в круг Вашего исследования, и ему присваивается порядковый номер.

б) Заранее заказать в любом компьютерном центре таблицу случайных чисел от 1 до 1000 и разделить ее пополам: 500 чисел до черты и 500 – после. Сверху пишете название старого способа, снизу – нового. Поступает больной. Допустим, его номер 48. Смотрим в таблице: число 48 оказывается в нижней части массива. Этот больной должен получить лечение новым, и только новым способом. Никакие перестановки здесь недопустимы. Если позволить себе их, то невольно начнешь отбирать для применения нового способа лечения «наиболее перспективных» больных. В результате «койко-день» в опытной группе будет существенно меньше, чем в контрольной, и количество осложнений – тоже и т. п. После этого можно обрабатывать полученные данные скольугодно изощренными методами – результаты останутся недостоверными. Вспомним слова Гексли (Хаксли – Thomas Henry Huxley, 1825–1895) о том, что математика – это жернов, который перемалывает все, что бы под него ни положили. Мощь жернова не превратит сорняки в пшеницу. Именно поэтому предложенное Вами будет жить недолго. В случае неклинического, чисто экспериментального исследования метод рандомизации применяется точно так же: животные нумеруются заранее, и затем их делят на опытную и контрольную группы в соответствии с таблицей случайных чисел. Желательно, чтобы ни исследователь, ни его помощники не знали, к какой из двух групп относится данное животное и вводят они исследуемый препарат или плацебо (слепой контроль). Если же удастся организовать дело так, чтобы принадлежность объекта исследования к опытной или контрольной группе оставалась неизвестной и в течение всего эксперимента, и во время первичной обработки данных, это уже будет double blind control, близкий к мировым стандартам. В этом случае исследователь узнает, где – опыт, а где – контроль, только в момент просмотра сводных таблиц или рисунков. А теперь, положа руку на сердце, скажите, часто ли Вы и Ваши коллеги так делаете?

Защита не зря именуется публичной. Это означает, что Вы имеете полное право прийти на заседание Совета и задавать соискателю любые вопросы относительно его работы. Если Вы точно знаете, что сегодняшний соискатель завтра не придет на вашу собственную защиту, задайте ему один короткий вопрос: «Как Вы осуществляли рандомизацию?» Ответа не будет, точнее, будет игра словами с целью замять вопрос. Если же Вы благоразумны, задайте тот же вопрос не на защите, а после нее, при личной встрече. Результат будет тот же.

Тому, в ком развит элемент артистизма, можем посоветовать способ рандомизации одновременно простой, надежный и производящий неизгладимое впечатление на учеников и помощников. Произвольно (а не в случайном порядке) выбираем животное. Доводим эксперимент до момента инъекции, не зная заранее, будет ли это опыт или контроль, и таким образом исключая всякую возможность подсознательного подыгрывания самим себе, зовем любого постороннего человека и просим его подбросить монетку. Орел – вводим препарат, решка – плацебо. Если хотите, смейтесь, а, по-нашему, это и есть поиск истины. Один из нас до сих пор хранит пятак, много лет назад случайно застрявший в люстре во время проведения такой рандомизации.

Достоверность и статистическая значимость

Здесь уместно рассмотреть точное значение двух терминов – достоверность и статистическая значимость. Эти понятия почти всегда смешивают. Если Вы, применив адекватный задаче метод исследования, получили какой-либо результат, если Вы измерили то, что измеряли, то есть не получили артефакт, Ваши данные по определению достоверны, даже если это единичный результат однократного измерения, который, разумеется, не может быть подвергнут никакой статистической обработке. Поскольку исследователь почти всегда работает не с генеральной совокупностью объектов, а с их выборкой, для перенесения отмеченных закономерностей с выборки на генеральную совокупность он обязан обработать экспериментальные данные статистическими методами. Если повезет чуть-чуть, результат окажется статистически значимым, то есть его можно будет перенести с ваших, скажем, 50-ти больных на всех больных (того же пола, возраста и т. п.), страдающих тем же недугом. Правда, и здесь будет сделана существенная натяжка: больные, поступавшие в вашу клинику, не представляют собой рандомизированной выборки из генеральной совокупности. Но тут Вы, очевидно, бессильны. Вряд ли Вы можете получить хотя бы общегородской список всех больных с каким-либо диагнозом и вызывать их для лечения в строго случайном порядке. Если быть очень придирчивым, то следовало бы в названии диссертации после упоминания нозологической формы указывать: «проходивших лечение в Санкт-Петербургском Центре Простатологии Российской Академии Естественных Наук в период с 1992 по 2008 год».

Амбиции вместо помощи, или Горе от ума

Все сказанное настолько просто, и настолько часто каждый исследователь слышал об этом… Но почему, ответьте, за редчайшим исключением диссертанты твердят о «статистической достоверности» их данных? Может быть, дело в том, что курсы статистики, читаемые аспирантам, заведомо перегружены описанием заумных математических критериев, и простые истины остаются за пределами учебных программ? Есть и еще одна возможная причина этого недоразумения. Всякий специалист хочет быть крупным специалистом. Химик обижается, когда его просят произвести банальный синтез, скажем, бомбезина, а не его четырехзамещенного и нигде в мире не существующего аналога. Специалист по биологической и медицинской статистике с готовностью расскажет Вам о каких-нибудь «полумарковских процессах» (бедный полу-Марков!), но неохотно станет объяснять Вам ограничения к применению критерия Стьюдента. Кроме того, у математиков, работающих в среде исследователей-медиков, есть очаровательная склонность говорить непонятно и отделываться от просящих совета и помощи снисходительными улыбками. Может быть, это результат глубокого внутреннего конфликта? Ведь вокруг тебя снуют люди, неспособные отличить интеграл от дифференциала, и все они имеют высокие ученые степени, как-то ухитряются делать важное дело и пользуются уважением сограждан… А ты знаешь так много, и почти всегда в тени!

Регистрация фоновых значений параметра

Следующее по порядку, но не по значимости, после метрологии и рандомизации средство борьбы с артефактами – строго продуманная регистрация исходных, или фоновых, значений параметров. Столь распространенный метод измерений «до-после» не имеет права даже называться научным методом. Когда до и когда после измерял избранные функции исследователь? Ведь абсолютно ясно, что любой параметр биологической системы постоянно колеблется, флуктуирует под действием столь многочисленных и столь малых по величине воздействий, что мы можем считать подобные изменения случайными и любое исходное значение параметра оценивать только статистически.

Если Вас не убедили эти рассуждения, измерьте несколько раз в стандартных условиях какой-либо показатель, особенно из числа интегративных, например физическую работоспособность, и вместо прямой или слегка извилистой линии, соединяющей данные, Вы получите широкий коридор нормальных исходных значений. А теперь подумайте, насколько достоверны будут отмеченные Вами «измерения физической работоспособности», если Вы оцените исходный уровень однократно.

Если есть физическая возможность регистрировать исходные значения интересующего Вас параметра на протяжении некоторого времени, это обязательно следует сделать. В математике есть правило, гласящее, что минимальное количество точек, позволяющее хотя бы приблизительно представить кривую, равно четырем. Измерьте параметр 4–6—8 раз через равные промежутки времени и изобразите эти данные в системе координат. Без применения каких-либо специальных средств анализа Вы увидите, происходит ли изменение среднего уровня показателя (рост или снижение – неважно) или перед Вами просто колебания вокруг некоторой горизонтальной линии. Если Вы убедились в том, что показатель не изменяется направленно, то есть флуктуирует, переходите к воздействию изучаемого фактора. Если нет, продолжайте регистрацию фона, покуда это возможно. В крайнем случае, откажитесь в этот день от проведения опыта и, обдумав причины помех, начинайте заново, на новом животном и, может быть, в несколько иных условиях. Приведем пример (рис. 3 и 4).

Рис. 3. Суждение об исходном (фоновом) уровне параметра Y – ненадежно. Просматривается тенденция к снижению Y. Необходимо продолжить регистрацию. t – время (Данные получены в одном опыте. Точки, составляющие кривую, не являются средними.)

Рис. 4. По-видимому, направленных изменений параметр Y не претерпевает. Если нет возможности продолжить регистрацию фоновых значений, их среднее арифметическое (пунктир) можно принять за исходный уровень Y. t – время

Сделайте эффект более ярким

Как уже было сказано, лучше не исследовать процессы, изменяющиеся в пределах 10 % от исходного уровня. Чтобы сделать регистрируемый эффект более заметным и, если повезет, даже очевидным, «загрузите» систему, доведите ее до пределов ее возможностей и только после этого воздействуйте на нее исследуемым фактором. Рассмотрим пример. Мы хотим убедиться в том, что вещество Х замедляет процесс естественного старения. Детали эксперимента не отработаны, дозы вещества – неизвестны. С чего начать? Воздействуйте на животных слабым ионизирующим излучением, чтобы многократно ускорить процесс старения, и после этого вводите вещество Х – эффект будет ярким и несомненным. (А если нет, то лучше поискать другой геропротектор.)

Другой пример. Вы исследуете влияние измененной внешней среды на деятельность человека-оператора и с удивлением обнаруживаете, что в весьма различных, в том числе и в очень неблагоприятных условиях среды Ваши испытатели показывают стабильные результаты в самых разнообразных психофизиологических тестах. В чем причина? Тесты недостаточно трудны, они не требуют полной мобилизации возможностей оператора. Остающиеся резервы столь велики, что легко перекрывают явно неблагоприятное внешнее воздействие. Максимально усложните тесты, введите элемент соревнования, чтобы насколько возможно усилить мотивацию, и посмотрите, так ли уж безразлично для деятельности испытателей воздействие данного фактора внешней среды.

Не откладывайте обработку данных

Еще одно правило гласит: забудьте выражения «я заканчиваю набор материала», «материал у нас давно набран» и т. п. Может быть, тот, кто первым пустил в обращение эти слова, вырос в семье портного? Ведь не станет же уважающий себя портной шить костюм, не набрав полностью необходимый материал! Но исследователь не может позволить себе в самом начале работы определить набор методик и, ничуть не изменяя их, «набирать» экспериментальные данные! Каждый отдельный опыт, каждое отдельное клиническое наблюдение должны быть тщательно обдуманы в тот же день, когда они были проведены. Только очень серьезные причины, как, например, окончание работы городского транспорта или явные признаки острого утомления экспериментатора, могут оправдать откладывание процесса обработки на следующий (но не более!) день. Необработанный эксперимент – погубленный эксперимент, и это – правило без исключений. Немедленная обработка результатов дает громадные преимущества исследователям, работающим в одиночку или в составе малых групп единомышленников. Большие научные коллективы с их огромными массивами данных и неизбежным разделением труда не могут обеспечить немедленную обработку результатов эксперимента.

Почему это важно? Причин, по меньшей мере, две. Во-первых, исследователь «по свежим следам» легче заметит несовершенство методики, появление странных, невероятных значений регистрируемого показателя, то есть вмешательство артефакта, и примет соответствующие меры, подправив методику и сведя, таким образом, к минимуму потери труда и времени – неизбежные спутники «больших» экспериментов. (Разумеется, после любого существенного изменения методики опыт снова должен быть повторен в количестве, достаточном для получения статистически значимых результатов.) Во-вторых, при обдумывании свежих результатов исследователь еще удерживает в памяти множество деталей, не внесенных в протокол. Одна из них может оказаться очень важной, если не решающей, для объяснения результатов. При «отложенной обработке» эти ценные детали эксперимента будут безвозвратно забыты.

В качестве последнего довода в пользу немедленной обработки экспериментальных данных скажем, что даже очень, казалось бы, рассеянные исследователи из числа добившихся значительного успеха в науке могли пренебречь многим, но не этим правилом. Сделал – обдумай – запиши в конце протокола, к чему пришел и что хотел бы сделать завтра. Завтра прочти – сделай – обдумай, и так без конца. Даже при экономном отношении к труду и бумаге за несколько лет у Вас накопится большой массив данных, «переварить» его Вы сможете, только опираясь на эти микрообсуждения, микровыводы и микропредположения, оставшиеся на полях протоколов.

6. Распространенные заблуждения и вредные поверья, или Что Вам не следует делать

Постараемся перечислить наиболее распространенные среди начинающих исследователей заблуждения и вредные поверья. Порядок перечисления произволен и не указывает на большую или меньшую значимость или встречаемость того или иного «уклона».

Исследовать неизвестное посредством известного

Заблуждение первое состоит в том, что диссертант считает возможным с помощью принципиально новых, недавно предложенных и пока не проверенных методов изучать новые же, неизвестные прежде явления. Один из соратников по научной борьбе сводит Вас с какими-то людьми, отличительными чертами внешности которых являются: джинсы, лыжный свитер, лохматая шевелюра и очки в толстой оправе. Работают они в каком-то техническом институте, «который вообще-то до прошлого года был закрытым», – названия его Вы все равно не запомните. Эти люди показывают Вам прибор, который, по их словам, измеряет сверхслабые, скажем, электромагнитные поля, излучаемые XFZ – структурой человеческого тела. Вы берете этот прибор и начинаете с его помощью доказывать лечебный эффект еще не запатентованного лекарственного препарата. Кто потом поверит вашим данным? Нельзя исследовать неизвестное неизвестным! Ситуация здесь еще хуже, чем та, что описана в гл. 5: там ненадежен был только измерительный прибор, а об измеряемых им параметрах (частота сердечных сокращений, минутный объем крови и др.) известно, что они хорошо описывают состояние сердечно-сосудистой системы человека. Здесь же нов и потому ненадежен сам Метод.


Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера:
<< 1 ... 5 6 7 8 9
На страницу:
9 из 9

Другие электронные книги автора Александр Марьянович